PlantCtrl/rust/src/main.rs

582 lines
20 KiB
Rust
Raw Normal View History

2024-01-07 14:33:02 +01:00
use std::{
env,
sync::{atomic::AtomicBool, Arc, Mutex},
};
2023-12-04 00:41:29 +01:00
2024-01-09 00:16:13 +01:00
use anyhow::{Result, bail};
use chrono::{Datelike, Duration, NaiveDateTime, Timelike, DateTime};
use chrono_tz::{Europe::Berlin, Tz};
2023-11-23 22:50:17 +01:00
use esp_idf_hal::delay::Delay;
2024-01-09 00:16:13 +01:00
use esp_idf_sys::{esp_restart, vTaskDelay, CONFIG_FREERTOS_HZ, esp_deep_sleep};
2024-01-07 14:33:02 +01:00
use esp_ota::rollback_and_reboot;
use log::error;
use once_cell::sync::Lazy;
2023-12-12 03:46:53 +01:00
use plant_hal::{CreatePlantHal, PlantCtrlBoard, PlantCtrlBoardInteraction, PlantHal, PLANT_COUNT};
2024-01-07 14:33:02 +01:00
use serde::{Deserialize, Serialize};
2023-12-12 03:46:53 +01:00
2024-01-07 14:33:02 +01:00
use crate::{
config::{Config, WifiConfig},
webserver::webserver::{httpd, httpd_initial},
};
2024-01-17 21:25:01 +01:00
pub mod bq34z100;
2023-11-29 18:27:40 +01:00
mod config;
2023-12-07 02:33:17 +01:00
pub mod plant_hal;
2024-01-07 14:33:02 +01:00
const MOIST_SENSOR_MAX_FREQUENCY: u32 = 5200; // 60kHz (500Hz margin)
const MOIST_SENSOR_MIN_FREQUENCY: u32 = 500; // 0.5kHz (500Hz margin)
const FROM: (f32, f32) = (
MOIST_SENSOR_MIN_FREQUENCY as f32,
MOIST_SENSOR_MAX_FREQUENCY as f32,
);
const TO: (f32, f32) = (0_f32, 100_f32);
2023-11-23 22:50:17 +01:00
mod webserver {
pub mod webserver;
}
2023-11-20 01:46:19 +01:00
2024-01-07 14:33:02 +01:00
#[derive(Serialize, Deserialize, Copy, Clone, Debug, PartialEq)]
2023-12-12 03:46:53 +01:00
enum OnlineMode {
Offline,
Wifi,
SnTp,
}
2024-01-07 14:33:02 +01:00
#[derive(Serialize, Deserialize, Copy, Clone, Debug, PartialEq)]
enum WaitType {
2023-12-22 01:35:08 +01:00
InitialConfig,
2023-12-27 17:33:11 +01:00
FlashError,
2024-01-07 14:33:02 +01:00
NormalConfig,
StayAlive,
2023-12-22 01:35:08 +01:00
}
2024-01-17 21:25:01 +01:00
#[derive(Serialize, Deserialize, Copy, Clone, Debug, PartialEq, Default)]
struct LightState{
active: bool,
out_of_work_hour: bool,
battery_low: bool,
is_day: bool
}
2024-01-07 14:33:02 +01:00
#[derive(Serialize, Deserialize, Copy, Clone, Debug, PartialEq, Default)]
struct PlantState {
2024-01-09 00:16:13 +01:00
a: Option<u8>,
b: Option<u8>,
p: Option<u8>,
after_p: Option<u8>,
do_water: bool,
2024-01-07 14:33:02 +01:00
dry: bool,
active: bool,
pump_error: bool,
not_effective: bool,
cooldown: bool,
no_water: bool,
2024-01-09 00:16:13 +01:00
sensor_error_a: bool,
sensor_error_b: bool,
sensor_error_p: bool,
out_of_work_hour: bool
2024-01-07 14:33:02 +01:00
}
fn wait_infinity(wait_type: WaitType, reboot_now: Arc<AtomicBool>) -> ! {
2023-12-22 01:35:08 +01:00
let delay = match wait_type {
WaitType::InitialConfig => 250_u32,
WaitType::FlashError => 100_u32,
2024-01-07 14:33:02 +01:00
WaitType::NormalConfig => 500_u32,
WaitType::StayAlive => 1000_u32,
2023-12-22 01:35:08 +01:00
};
2023-12-27 17:33:11 +01:00
let led_count = match wait_type {
WaitType::InitialConfig => 8,
WaitType::FlashError => 8,
2024-01-07 14:33:02 +01:00
WaitType::NormalConfig => 4,
WaitType::StayAlive => 2,
2023-12-27 17:33:11 +01:00
};
2023-12-12 03:46:53 +01:00
loop {
unsafe {
//do not trigger watchdog
for i in 0..8 {
2024-01-07 14:33:02 +01:00
BOARD_ACCESS.lock().unwrap().fault(i, i < led_count);
2023-12-22 01:35:08 +01:00
}
2023-12-27 17:33:11 +01:00
BOARD_ACCESS.lock().unwrap().general_fault(true);
2023-12-22 01:35:08 +01:00
vTaskDelay(delay);
2023-12-27 17:33:11 +01:00
BOARD_ACCESS.lock().unwrap().general_fault(false);
for i in 0..8 {
2024-01-07 14:33:02 +01:00
BOARD_ACCESS.lock().unwrap().fault(i, false);
2023-12-22 01:35:08 +01:00
}
vTaskDelay(delay);
2024-01-07 14:33:02 +01:00
if wait_type == WaitType::StayAlive
&& !STAY_ALIVE.load(std::sync::atomic::Ordering::Relaxed)
2024-01-09 00:16:13 +01:00
{
reboot_now.store(true, std::sync::atomic::Ordering::Relaxed);
}
2023-12-27 17:33:11 +01:00
if reboot_now.load(std::sync::atomic::Ordering::Relaxed) {
println!("Rebooting");
esp_restart();
}
2023-12-12 03:46:53 +01:00
}
}
}
2024-01-07 14:33:02 +01:00
pub static BOARD_ACCESS: Lazy<Mutex<PlantCtrlBoard>> = Lazy::new(|| PlantHal::create().unwrap());
pub static STAY_ALIVE: Lazy<AtomicBool> = Lazy::new(|| AtomicBool::new(false));
2024-01-09 00:16:13 +01:00
fn map_range(from_range: (f32, f32), s: f32) -> Result<f32> {
if s < from_range.0 {
bail!("Value out of range, min {} but current is {}", from_range.0, s);
}
if s > from_range.1 {
bail!("Value out of range, max {} but current is {}", from_range.1, s);
}
return Ok(TO.0 + (s - from_range.0) * (TO.1 - TO.0) / (from_range.1 - from_range.0));
}
fn map_range_moisture(s: f32) -> Result<u8> {
if s < FROM.0 {
bail!("Value out of range, min {} but current is {}", FROM.0, s);
}
if s > FROM.1 {
bail!("Value out of range, max {} but current is {}", FROM.1, s);
}
let tmp = TO.0 + (s - FROM.0) * (TO.1 - TO.0) / (FROM.1 - FROM.0);
return Ok(tmp as u8);
}
fn in_time_range(cur: DateTime<Tz>, start:u8, end:u8) -> bool{
let curhour = cur.hour() as u8;
//eg 10-14
2024-01-17 21:25:01 +01:00
if start < end {
2024-01-09 00:16:13 +01:00
return curhour > start && curhour < end;
} else {
//eg 20-05
2024-01-17 21:25:01 +01:00
return curhour > start || curhour < end;
2024-01-09 00:16:13 +01:00
}
}
fn determine_next_plant(plantstate: &mut [PlantState;PLANT_COUNT],cur: DateTime<Tz>, enough_water: bool, tank_sensor_error: bool, config: &Config, board: &mut std::sync::MutexGuard<'_, PlantCtrlBoard<'_>>) -> Option<usize> {
for plant in 0..PLANT_COUNT {
let state = &mut plantstate[plant];
let plant_config = config.plants[plant];
match plant_config.mode {
config::Mode::OFF => {
},
config::Mode::TargetMoisture => {
match board.measure_moisture_hz(plant, plant_hal::Sensor::A).and_then (|moist| map_range_moisture(moist as f32)) {
Ok(a) => state.a = Some(a),
Err(err) => {
board.fault(plant, true);
println!("Could not determine Moisture A for plant {} due to {}", plant, err);
state.a = None;
state.sensor_error_a = true;
}
}
match board.measure_moisture_hz(plant, plant_hal::Sensor::B).and_then (|moist| map_range_moisture(moist as f32)) {
Ok(b) => state.b = Some(b),
Err(err) => {
board.fault(plant, true);
println!("Could not determine Moisture B for plant {} due to {}", plant, err);
state.b = None;
state.sensor_error_b = true;
}
}
//FIXME how to average analyze whatever?
let a_low = state.a.is_some() && state.a.unwrap() < plant_config.target_moisture;
let b_low = state.b.is_some() && state.b.unwrap() < plant_config.target_moisture;
if a_low || b_low {
state.dry = true;
if tank_sensor_error && !config.tank_allow_pumping_if_sensor_error || !enough_water {
state.no_water = true;
}
}
let duration = Duration::minutes((60 * plant_config.pump_cooldown_min).into());
let next_pump = board.last_pump_time(plant) + duration;
if next_pump > cur {
state.cooldown = true;
}
if !in_time_range(cur, plant_config.pump_hour_start, plant_config.pump_hour_end) {
state.out_of_work_hour = true;
}
2024-01-17 21:25:01 +01:00
if state.dry && !state.no_water && !state.cooldown && !state.out_of_work_hour {
2024-01-09 00:16:13 +01:00
state.do_water = true;
}
},
config::Mode::TimerOnly => {
let duration = Duration::minutes((60 * plant_config.pump_cooldown_min).into());
let next_pump = board.last_pump_time(plant) + duration;
if next_pump > cur {
state.cooldown = true;
} else {
state.do_water = true;
}
},
config::Mode::TimerAndDeadzone => {
let duration = Duration::minutes((60 * plant_config.pump_cooldown_min).into());
let next_pump = board.last_pump_time(plant) + duration;
if next_pump > cur {
state.cooldown = true;
}
if !in_time_range(cur, plant_config.pump_hour_start, plant_config.pump_hour_end) {
state.out_of_work_hour = true;
}
2024-01-17 21:25:01 +01:00
if !state.cooldown && !state.out_of_work_hour {
2024-01-09 00:16:13 +01:00
state.do_water = true;
}
},
}
//FIXME publish state here!
if state.do_water{
if board.consecutive_pump_count(plant) > config.max_consecutive_pump_count.into() {
state.not_effective = true;
board.fault(plant, true);
}
} else {
board.store_consecutive_pump_count(plant, 0);
}
println!("Plant {} state is {:?}", plant, state);
}
for plant in 0..PLANT_COUNT {
let state = &plantstate[plant];
println!("Checking for water plant {} with state {}", plant, state.do_water);
if state.do_water {
return Some(plant);
}
}
println!("No plant needs water");
return None
2024-01-07 14:33:02 +01:00
}
2023-12-27 17:33:11 +01:00
2024-01-17 21:25:01 +01:00
fn safe_main() -> Result<()> {
2023-11-20 01:46:19 +01:00
// It is necessary to call this function once. Otherwise some patches to the runtime
// implemented by esp-idf-sys might not link properly. See https://github.com/esp-rs/esp-idf-template/issues/71
esp_idf_svc::sys::link_patches();
// Bind the log crate to the ESP Logging facilities
esp_idf_svc::log::EspLogger::initialize_default();
2024-01-07 14:33:02 +01:00
if esp_idf_sys::CONFIG_MAIN_TASK_STACK_SIZE < 20000 {
error!(
"stack too small: {} bail!",
esp_idf_sys::CONFIG_MAIN_TASK_STACK_SIZE
);
return Ok(());
}
2023-11-23 22:50:17 +01:00
log::info!("Startup Rust");
2023-11-20 01:46:19 +01:00
2023-11-27 01:07:07 +01:00
let git_hash = env!("VERGEN_GIT_DESCRIBE");
println!("Version useing git has {}", git_hash);
2023-11-23 22:50:17 +01:00
2024-01-07 14:33:02 +01:00
let mut partition_state: embedded_svc::ota::SlotState = embedded_svc::ota::SlotState::Unknown;
2024-01-09 00:16:13 +01:00
match esp_idf_svc::ota::EspOta::new() {
Ok(ota) => {
2024-01-17 21:25:01 +01:00
//match ota.get_running_slot(){
// Ok(slot) => {
2024-01-07 14:33:02 +01:00
// partition_state = slot.state;
// println!(
// "Booting from {} with state {:?}",
// slot.label, partition_state
// );
2024-01-17 21:25:01 +01:00
//},
// Err(err) => {
// println!("Error getting running slot {}", err);
// },
//}
2024-01-09 00:16:13 +01:00
},
Err(err) => {
println!("Error obtaining ota info {}", err);
},
}
2024-01-07 14:33:02 +01:00
2023-12-12 03:46:53 +01:00
println!("Board hal init");
2024-01-07 14:33:02 +01:00
let mut board: std::sync::MutexGuard<'_, PlantCtrlBoard<'_>> = BOARD_ACCESS.lock().unwrap();
2024-01-17 21:25:01 +01:00
2023-12-12 03:46:53 +01:00
println!("Mounting filesystem");
2024-01-07 14:33:02 +01:00
board.mount_file_system()?;
let free_space = board.file_system_size()?;
2023-12-12 03:46:53 +01:00
println!(
"Mounted, total space {} used {} free {}",
free_space.total_size, free_space.used_size, free_space.free_size
);
let time = board.time();
let mut cur = match time {
Ok(cur) => cur,
Err(err) => {
log::error!("time error {}", err);
NaiveDateTime::from_timestamp_millis(0).unwrap().and_utc()
}
};
//check if we know the time current > 2020
if cur.year() < 2020 {
if board.is_day() {
//assume TZ safe times ;)
cur = *cur.with_hour(15).get_or_insert(cur);
} else {
cur = *cur.with_hour(3).get_or_insert(cur);
}
}
2023-12-07 02:33:17 +01:00
2023-12-12 03:46:53 +01:00
println!("cur is {}", cur);
if board.is_config_reset() {
2024-01-07 14:33:02 +01:00
board.general_fault(true);
2023-12-12 03:46:53 +01:00
println!("Reset config is pressed, waiting 5s");
2024-01-07 14:34:45 +01:00
for _i in 0..25 {
2024-01-07 14:33:02 +01:00
board.general_fault(true);
Delay::new_default().delay_ms(50);
board.general_fault(false);
Delay::new_default().delay_ms(50);
}
2023-12-12 03:46:53 +01:00
if board.is_config_reset() {
println!("Reset config is still pressed, deleting configs and reboot");
match board.remove_configs() {
2023-12-27 17:33:11 +01:00
Ok(case) => {
println!("Succeeded in deleting config {}", case);
2023-12-12 03:46:53 +01:00
}
Err(err) => {
println!("Could not remove config files, system borked {}", err);
//terminate main app and freeze
2023-12-27 17:33:11 +01:00
wait_infinity(WaitType::FlashError, Arc::new(AtomicBool::new(false)));
2023-12-12 03:46:53 +01:00
}
2023-12-07 02:33:17 +01:00
}
2024-01-07 14:33:02 +01:00
} else {
board.general_fault(false);
2023-11-21 23:45:15 +01:00
}
2023-12-12 03:46:53 +01:00
}
2023-11-20 01:46:19 +01:00
2023-12-12 03:46:53 +01:00
let mut online_mode = OnlineMode::Offline;
let wifi_conf = board.get_wifi();
let wifi: WifiConfig;
2024-01-07 14:33:02 +01:00
match wifi_conf {
2023-12-12 03:46:53 +01:00
Ok(conf) => {
wifi = conf;
2024-01-07 14:33:02 +01:00
}
2023-12-12 03:46:53 +01:00
Err(err) => {
2024-01-07 14:33:02 +01:00
if board.is_wifi_config_file_existant() {
match partition_state {
embedded_svc::ota::SlotState::Invalid
| embedded_svc::ota::SlotState::Unverified => {
println!("Config seem to be unparsable after upgrade, reverting");
rollback_and_reboot()?;
}
_ => {}
}
}
2023-12-12 03:46:53 +01:00
println!("Missing wifi config, entering initial config mode {}", err);
2023-12-22 01:35:08 +01:00
board.wifi_ap().unwrap();
2023-12-12 03:46:53 +01:00
//config upload will trigger reboot!
2023-12-22 01:35:08 +01:00
drop(board);
2023-12-27 17:33:11 +01:00
let reboot_now = Arc::new(AtomicBool::new(false));
let _webserver = httpd_initial(reboot_now.clone());
2023-12-27 17:33:11 +01:00
wait_infinity(WaitType::InitialConfig, reboot_now.clone());
2023-12-12 03:46:53 +01:00
}
2024-01-07 14:33:02 +01:00
};
2023-11-29 18:27:40 +01:00
2023-12-12 03:46:53 +01:00
println!("attempting to connect wifi");
match board.wifi(&wifi.ssid, wifi.password.as_deref(), 10000) {
Ok(_) => {
online_mode = OnlineMode::Wifi;
}
Err(_) => {
println!("Offline mode");
board.general_fault(true);
}
}
2023-12-07 02:33:17 +01:00
2023-12-12 03:46:53 +01:00
if online_mode == OnlineMode::Wifi {
match board.sntp(1000 * 120) {
Ok(new_time) => {
cur = new_time;
online_mode = OnlineMode::SnTp;
2024-01-07 14:33:02 +01:00
}
2023-12-07 02:33:17 +01:00
Err(err) => {
2023-12-12 03:46:53 +01:00
println!("sntp error: {}", err);
board.general_fault(true);
2023-12-07 02:33:17 +01:00
}
}
2023-11-29 18:27:40 +01:00
}
2023-12-12 03:46:53 +01:00
2024-01-09 00:16:13 +01:00
println!("Running logic at utc {}", cur);
let europe_time = cur.with_timezone(&Berlin);
println!("Running logic at europe/berlin {}", europe_time);
2024-01-07 14:33:02 +01:00
let config: Config;
match board.get_config() {
2023-12-27 17:33:11 +01:00
Ok(valid) => {
config = valid;
2024-01-07 14:33:02 +01:00
}
2023-12-27 17:33:11 +01:00
Err(err) => {
println!("Missing normal config, entering config mode {}", err);
//config upload will trigger reboot!
drop(board);
let reboot_now = Arc::new(AtomicBool::new(false));
let _webserver = httpd(reboot_now.clone());
wait_infinity(WaitType::NormalConfig, reboot_now.clone());
2024-01-07 14:33:02 +01:00
}
2023-12-27 17:33:11 +01:00
}
2024-01-07 14:33:02 +01:00
//do mqtt before config check, as mqtt might configure
2023-12-22 01:35:08 +01:00
if online_mode == OnlineMode::SnTp {
2024-01-07 14:33:02 +01:00
match board.mqtt(&config) {
Ok(_) => {
println!("Mqtt connection ready");
}
Err(err) => {
println!("Could not connect mqtt due to {}", err);
}
}
}
match board.battery_state() {
Ok(_state) => {}
Err(err) => {
board.general_fault(true);
println!("Could not read battery state, assuming low power {}", err);
}
}
let mut enough_water = true;
2024-01-09 00:16:13 +01:00
let mut tank_sensor_error = false;
2024-01-07 14:33:02 +01:00
if config.tank_sensor_enabled {
2024-01-09 00:16:13 +01:00
let mut tank_value_r = 0;
let success = board.tank_sensor_mv().and_then(|raw| {
tank_value_r = raw;
return map_range(
(config.tank_empty_mv as f32, config.tank_full_mv as f32),
raw as f32,
);
}).and_then(|percent| {
let left_ml = ((percent / 100_f32) * config.tank_useable_ml as f32) as u32;
println!(
"Tank sensor returned mv {} as {}% leaving {} ml useable",
tank_value_r, percent as u8, left_ml
);
if config.tank_warn_percent > percent as u8 {
board.general_fault(true);
2024-01-07 14:33:02 +01:00
println!(
2024-01-09 00:16:13 +01:00
"Low water, current percent is {}, minimum warn level is {}",
percent as u8, config.tank_warn_percent
2024-01-07 14:33:02 +01:00
);
}
2024-01-09 00:16:13 +01:00
if config.tank_warn_percent <= 0 {
enough_water = false;
}
return Ok(());
});
match success {
Err(err) => {
println!("Could not determine tank value due to {}", err);
2024-01-07 14:33:02 +01:00
board.general_fault(true);
2024-01-09 00:16:13 +01:00
tank_sensor_error = true;
2024-01-07 14:33:02 +01:00
}
2024-01-09 00:16:13 +01:00
Ok(_) => {},
2024-01-07 14:33:02 +01:00
}
2023-11-21 23:45:15 +01:00
}
2024-01-07 14:33:02 +01:00
2024-01-09 00:16:13 +01:00
let mut water_frozen = false;
for _attempt in 0..5 {
let water_temperature = board.water_temperature_c();
match water_temperature {
Ok(temp) => {
//FIXME mqtt here
println!("Water temp is {}", temp);
2024-01-17 21:25:01 +01:00
if temp < 4_f32 {
2024-01-09 00:16:13 +01:00
water_frozen = true;
}
break;
},
Err(err) => {
println!("Could not get water temp {}", err)
},
2024-01-07 14:33:02 +01:00
}
}
2024-01-09 00:16:13 +01:00
let mut plantstate = [PlantState {
..Default::default()
}; PLANT_COUNT];
let plant_to_pump = determine_next_plant(&mut plantstate, europe_time, enough_water, tank_sensor_error, &config, &mut board);
2024-01-07 14:33:02 +01:00
2024-01-07 14:34:45 +01:00
if STAY_ALIVE.load(std::sync::atomic::Ordering::Relaxed) {
2024-01-07 14:33:02 +01:00
drop(board);
let reboot_now = Arc::new(AtomicBool::new(false));
let _webserver = httpd(reboot_now.clone());
wait_infinity(WaitType::StayAlive, reboot_now.clone());
}
2024-01-09 00:16:13 +01:00
match plant_to_pump {
Some(plant) => {
let mut state = plantstate[plant];
let consecutive_pump_count = board.consecutive_pump_count(plant) + 1;
board.store_consecutive_pump_count(plant, consecutive_pump_count);
2024-01-07 14:33:02 +01:00
let plant_config = config.plants[plant];
2024-01-09 00:16:13 +01:00
println!("Trying to pump for {}s with pump {} now", plant_config.pump_time_s,plant);
2024-01-07 14:33:02 +01:00
board.any_pump(true)?;
board.store_last_pump_time(plant, cur);
board.pump(plant, true)?;
2024-01-09 00:16:13 +01:00
board.last_pump_time(plant);
2024-01-07 14:33:02 +01:00
state.active = true;
2024-01-09 00:16:13 +01:00
//FIXME do periodic pump test here and state update
unsafe { vTaskDelay(plant_config.pump_time_s as u32*CONFIG_FREERTOS_HZ) };
match map_range_moisture(board.measure_moisture_hz(plant, plant_hal::Sensor::PUMP)? as f32) {
Ok(p) => state.after_p = Some(p),
Err(err) => {
board.fault(plant, true);
println!("Could not determine Moisture P after for plant {} due to {}", plant, err);
state.after_p = None;
state.sensor_error_p = true;
}
}
if state.after_p.is_none() || state.p.is_none() || state.after_p.unwrap() < state.p.unwrap() + 5 {
2024-01-07 14:33:02 +01:00
state.pump_error = true;
board.fault(plant, true);
}
2024-01-09 00:16:13 +01:00
},
None => {
println!("Nothing to do");
2024-01-07 14:33:02 +01:00
}
2024-01-09 00:16:13 +01:00
,
2023-12-07 02:33:17 +01:00
}
2023-12-12 03:46:53 +01:00
2024-01-17 21:25:01 +01:00
let mut light_state = LightState{ ..Default::default() };
light_state.is_day = board.is_day();
light_state.out_of_work_hour = !in_time_range(europe_time, config.night_lamp_hour_start, config.night_lamp_hour_end);
if !light_state.out_of_work_hour {
if config.night_lamp_only_when_dark {
if !light_state.is_day {
board.light(true).unwrap();
}
}else {
board.light(true).unwrap();
}
} else {
board.light(false).unwrap();
}
println!("Lightstate is {:?}", light_state);
//check if during light time
2023-12-12 03:46:53 +01:00
//lightstate += out of worktime
//check battery level
//lightstate += battery empty
//check solar level if config requires
//lightstate += stillday
//if no preventing lightstate, enable light
//lightstate = active
//deepsleep here?
2024-01-09 00:16:13 +01:00
unsafe { esp_deep_sleep(1000*1000*10) };
2023-11-20 01:46:19 +01:00
}
2023-11-20 02:24:14 +01:00
2024-01-17 21:25:01 +01:00
fn main(){
let result = safe_main();
result.unwrap();
}
2023-11-20 02:24:14 +01:00
//error codes
//error_reading_config_after_upgrade
//error_no_config_after_upgrade
2023-12-07 02:33:17 +01:00
//error_tank_sensor_fault