6 Commits

5 changed files with 397 additions and 504 deletions

View File

@@ -68,7 +68,7 @@
39,
40
],
"visible_layers": "ffc7055_fffffff8",
"visible_layers": "ffc7055_ffffffff",
"zone_display_mode": 1
},
"git": {

View File

@@ -1,5 +1,5 @@
# Rust often needs a bit of an extra main task stack size compared to C (the default is 3K)
CONFIG_ESP_MAIN_TASK_STACK_SIZE=25000
CONFIG_ESP_MAIN_TASK_STACK_SIZE=50000
# Use this to set FreeRTOS kernel tick frequency to 1000 Hz (100 Hz by default).
# This allows to use 1 ms granuality for thread sleeps (10 ms by default).

View File

@@ -60,7 +60,6 @@ pub struct Plant {
pub pump_hour_start: u8,
pub pump_hour_end: u8,
pub sensor_b: bool,
pub sensor_p: bool,
}
impl Default for Plant {
fn default() -> Self {
@@ -71,8 +70,7 @@ impl Default for Plant {
pump_hour_start: 8,
pump_hour_end: 20,
mode: Mode::OFF,
sensor_b: false,
sensor_p: false,
sensor_b: false
}
}
}

View File

@@ -1,8 +1,13 @@
use std::sync::{atomic::AtomicBool, Arc, Mutex};
use std::{
fmt::Display,
sync::{atomic::AtomicBool, Arc, Mutex},
};
use chrono::{DateTime, Datelike, TimeDelta, Timelike};
use anyhow::Result;
use chrono::{DateTime, Datelike, TimeDelta, Timelike, Utc};
use chrono_tz::{Europe::Berlin, Tz};
use config::Mode;
use esp_idf_hal::delay::Delay;
use esp_idf_sys::{
esp_deep_sleep, esp_ota_get_app_partition_count, esp_ota_get_running_partition,
@@ -41,7 +46,7 @@ mod webserver {
pub mod webserver;
}
#[derive(Serialize, Deserialize, Copy, Clone, Debug, PartialEq)]
#[derive(Serialize, Deserialize, Debug, PartialEq)]
enum OnlineMode {
Offline,
Wifi,
@@ -49,7 +54,7 @@ enum OnlineMode {
Online,
}
#[derive(Serialize, Deserialize, Copy, Clone, Debug, PartialEq)]
#[derive(Serialize, Deserialize, Debug, PartialEq)]
enum WaitType {
InitialConfig,
FlashError,
@@ -57,7 +62,7 @@ enum WaitType {
StayAlive,
}
#[derive(Serialize, Deserialize, Copy, Clone, Debug, PartialEq, Default)]
#[derive(Serialize, Deserialize, Debug, PartialEq, Default)]
struct LightState {
active: bool,
out_of_work_hour: bool,
@@ -65,15 +70,13 @@ struct LightState {
is_day: bool,
}
#[derive(Clone, Copy, Debug, PartialEq, Default)]
#[derive(Debug, PartialEq, Default)]
struct PlantState {
a: Option<u8>,
b: Option<u8>,
p: Option<u8>,
consecutive_pump_count: u32,
after_p: Option<u8>,
do_water: bool,
frozen: bool,
dry: bool,
active: bool,
pump_error: bool,
@@ -82,25 +85,60 @@ struct PlantState {
no_water: bool,
sensor_error_a: Option<SensorError>,
sensor_error_b: Option<SensorError>,
sensor_error_p: Option<SensorError>,
out_of_work_hour: bool,
next_pump: Option<DateTime<Tz>>,
}
#[derive(Serialize, Deserialize, Copy, Clone, Debug, PartialEq)]
#[derive(Serialize, Deserialize, Debug, PartialEq)]
enum SensorError {
Unknown,
ShortCircuit { hz: f32, max: f32 },
OpenCircuit { hz: f32, min: f32 },
}
#[derive(Serialize, Deserialize, Copy, Clone, Debug, PartialEq, Default)]
#[derive(Debug, PartialEq, Default)]
struct TankState {
enough_water: bool,
warn_level: bool,
left_ml: u32,
sensor_error: bool,
raw: u16,
}
#[derive(Serialize)]
struct TankStateMQTT {
enough_water: bool,
warn_level: bool,
left_ml: u32,
sensor_error: bool,
raw: u16,
water_frozen: String,
}
#[derive(Serialize)]
struct PlantStateMQTT<'a> {
a: &'a str,
b: &'a str,
mode: &'a str,
consecutive_pump_count: u32,
dry: bool,
active: bool,
pump_error: bool,
not_effective: bool,
cooldown: bool,
out_of_work_hour: bool,
last_pump: &'a str,
next_pump: &'a str,
}
#[derive(Serialize)]
struct BatteryState<'a> {
voltage_milli_volt: &'a str,
current_milli_ampere: &'a str,
cycle_count: &'a str,
design_milli_ampere: &'a str,
remaining_milli_ampere: &'a str,
state_of_charge: &'a str,
state_of_health: &'a str,
}
fn safe_main() -> anyhow::Result<()> {
// It is necessary to call this function once. Otherwise some patches to the runtime
@@ -128,7 +166,7 @@ fn safe_main() -> anyhow::Result<()> {
);
let count = unsafe { esp_ota_get_app_partition_count() };
println!("Partition count is {}", count);
println!("Partit ion count is {}", count);
let mut ota_state: esp_ota_img_states_t = 0;
let running_partition = unsafe { esp_ota_get_running_partition() };
let address = unsafe { (*running_partition).address };
@@ -156,7 +194,7 @@ fn safe_main() -> anyhow::Result<()> {
println!("Board hal init");
let mut board: std::sync::MutexGuard<'_, PlantCtrlBoard<'_>> = BOARD_ACCESS.lock().unwrap();
board.general_fault(false);
println!("Mounting filesystem");
board.mount_file_system()?;
let free_space = board.file_system_size()?;
@@ -323,26 +361,16 @@ fn safe_main() -> anyhow::Result<()> {
}
let tank_state = determine_tank_state(&mut board, &config);
if online_mode == OnlineMode::Online {
if tank_state.sensor_error {
let _ = board.mqtt_publish(&config, "/water/ml", "error".to_string().as_bytes());
} else {
let _ = board.mqtt_publish(
&config,
"/water/ml",
tank_state.left_ml.to_string().as_bytes(),
);
let _ = board.mqtt_publish(
&config,
"/water/enough_water",
tank_state.enough_water.to_string().as_bytes(),
);
let _ =
board.mqtt_publish(&config, "/water/raw", tank_state.raw.to_string().as_bytes());
}
}
let mut tank_state_mqtt = TankStateMQTT {
enough_water: tank_state.enough_water,
left_ml: tank_state.left_ml,
warn_level: tank_state.warn_level,
sensor_error: tank_state.sensor_error,
raw: tank_state.raw,
water_frozen: "".to_owned(),
};
let mut water_frozen = false;
let mut temp: Option<f32> = None;
for _attempt in 0..5 {
let water_temperature = board.water_temperature_c();
@@ -362,21 +390,25 @@ fn safe_main() -> anyhow::Result<()> {
if res < 4_f32 {
water_frozen = true;
}
if online_mode == OnlineMode::Online {
let _ =
board.mqtt_publish(&config, "/water/temperature", res.to_string().as_bytes());
}
}
None => {
if online_mode == OnlineMode::Online {
let _ = board.mqtt_publish(&config, "/water/temperature", "Error".as_bytes());
}
tank_state_mqtt.water_frozen = water_frozen.to_string();
}
None => tank_state_mqtt.water_frozen = "tank sensor error".to_owned(),
}
let mut plantstate = [PlantState {
if online_mode == OnlineMode::Online {
match serde_json::to_string(&tank_state_mqtt) {
Ok(state) => {
let _ = board.mqtt_publish(&config, "/water", state.as_bytes());
}
Err(err) => {
println!("Error publishing tankstate {}", err);
}
};
}
let mut plantstate: [PlantState; PLANT_COUNT] = core::array::from_fn(|_| PlantState {
..Default::default()
}; PLANT_COUNT];
});
let plant_to_pump = determine_next_plant(
&mut plantstate,
europe_time,
@@ -388,12 +420,7 @@ fn safe_main() -> anyhow::Result<()> {
let stay_alive = STAY_ALIVE.load(std::sync::atomic::Ordering::Relaxed);
println!("Check stay alive, current state is {}", stay_alive);
if stay_alive {
drop(board);
let reboot_now = Arc::new(AtomicBool::new(false));
let _webserver = httpd(reboot_now.clone());
wait_infinity(WaitType::StayAlive, reboot_now.clone());
}
let mut did_pump = false;
match plant_to_pump {
Some(plant) => {
@@ -407,71 +434,23 @@ fn safe_main() -> anyhow::Result<()> {
let plant_config = config.plants[plant];
if plant_config.sensor_p {
match map_range_moisture(
board.measure_moisture_hz(plant, plant_hal::Sensor::PUMP)? as f32,
) {
Ok(p) => state.p = Some(p),
Err(err) => {
board.fault(plant, true);
state.sensor_error_p = Some(err);
}
}
}
println!(
"Trying to pump for {}s with pump {} now",
plant_config.pump_time_s, plant
);
did_pump = true;
board.any_pump(true)?;
board.store_last_pump_time(plant, cur);
board.pump(plant, true)?;
board.last_pump_time(plant);
state.active = true;
for _ in 0..plant_config.pump_time_s {
unsafe { vTaskDelay(CONFIG_FREERTOS_HZ) };
if plant_config.sensor_p {
let moist = map_range_moisture(
board.measure_moisture_hz(plant, plant_hal::Sensor::PUMP)? as f32,
);
if online_mode == OnlineMode::Online {
let _ = board.mqtt_publish(
&config,
format!("/plant{}/Sensor P after", plant + 1).as_str(),
option_to_string(moist.ok()).as_bytes(),
);
}
} else {
if online_mode == OnlineMode::Online {
let _ = board.mqtt_publish(
&config,
format!("/plant{}/Sensor P after", plant + 1).as_str(),
"disabled".as_bytes(),
);
}
if !stay_alive {
did_pump = true;
board.any_pump(true)?;
board.store_last_pump_time(plant, cur);
board.pump(plant, true)?;
board.last_pump_time(plant);
state.active = true;
for _ in 0..plant_config.pump_time_s {
unsafe { vTaskDelay(CONFIG_FREERTOS_HZ) };
//info message or something?
}
}
board.pump(plant, false)?;
if plant_config.sensor_p {
match map_range_moisture(
board.measure_moisture_hz(plant, plant_hal::Sensor::PUMP)? as f32,
) {
Ok(p) => state.after_p = Some(p),
Err(err) => {
board.fault(plant, true);
state.sensor_error_p = Some(err);
}
}
if state.after_p.is_none()
|| state.p.is_none()
|| state.after_p.unwrap() < state.p.unwrap() + 5
{
state.pump_error = true;
board.fault(plant, true);
//mqtt sync pump error value
}
board.pump(plant, false)?;
}
}
None => {
@@ -487,7 +466,7 @@ fn safe_main() -> anyhow::Result<()> {
let is_day = board.is_day();
light_state.is_day = is_day;
light_state.out_of_work_hour = !in_time_range(
europe_time,
&europe_time,
config.night_lamp_hour_start,
config.night_lamp_hour_end,
);
@@ -528,7 +507,7 @@ fn safe_main() -> anyhow::Result<()> {
if online_mode == OnlineMode::Online {
match serde_json::to_string(&light_state) {
Ok(state) => {
let _ = board.mqtt_publish(&config, "/light/active", state.as_bytes());
let _ = board.mqtt_publish(&config, "/light", state.as_bytes());
}
Err(err) => {
println!("Error publishing lightstate {}", err);
@@ -569,6 +548,13 @@ fn safe_main() -> anyhow::Result<()> {
//is deep sleep
mark_app_valid();
if stay_alive {
drop(board);
let reboot_now = Arc::new(AtomicBool::new(false));
let _webserver = httpd(reboot_now.clone());
wait_infinity(WaitType::StayAlive, reboot_now.clone());
}
unsafe { esp_deep_sleep(1000 * 1000 * 60 * deep_sleep_duration_minutes as u64) };
}
@@ -576,116 +562,21 @@ fn publish_battery_state(
board: &mut std::sync::MutexGuard<'_, PlantCtrlBoard<'_>>,
config: &Config,
) {
match board.voltage_milli_volt() {
Ok(v) => {
let _ = board.mqtt_publish(
&config,
"/battery/voltage_milli_volt",
v.to_string().as_bytes(),
);
}
Err(err) => {
let _ = board.mqtt_publish(&config, "/battery/voltage_milli_volt", "-1".as_bytes());
let _ = board.mqtt_publish(&config, "/errorlog", format!("{:?}", err).as_bytes());
}
let bat = BatteryState {
voltage_milli_volt: &to_string(&board.voltage_milli_volt()),
current_milli_ampere: &to_string(&board.average_current_milli_ampere()),
cycle_count: &to_string(&board.cycle_count()),
design_milli_ampere: &to_string(&board.design_milli_ampere_hour()),
remaining_milli_ampere: &to_string(&board.remaining_milli_ampere_hour()),
state_of_charge: &to_string(&board.state_charge_percent()),
state_of_health: &to_string(&board.state_health_percent()),
};
match board.average_current_milli_ampere() {
Ok(v) => {
let _ = board.mqtt_publish(
&config,
"/battery/average_current_milli_ampere",
v.to_string().as_bytes(),
);
match serde_json::to_string(&bat) {
Ok(state) => {
let _ = board.mqtt_publish(&config, "/battery", state.as_bytes());
}
Err(err) => {
let _ = board.mqtt_publish(
&config,
"/battery/average_current_milli_ampere",
"-1".as_bytes(),
);
let _ = board.mqtt_publish(&config, "/errorlog", format!("{:?}", err).as_bytes());
}
};
match board.cycle_count() {
Ok(v) => {
let _ = board.mqtt_publish(&config, "/battery/cycle_count", v.to_string().as_bytes());
}
Err(err) => {
let _ = board.mqtt_publish(&config, "/battery/cycle_count", "-1".as_bytes());
let _ = board.mqtt_publish(&config, "/errorlog", format!("{:?}", err).as_bytes());
}
};
match board.design_milli_ampere_hour() {
Ok(v) => {
let _ = board.mqtt_publish(
&config,
"/battery/design_milli_ampere_hour",
v.to_string().as_bytes(),
);
}
Err(err) => {
let _ = board.mqtt_publish(
&config,
"/battery/design_milli_ampere_hour",
"-1".as_bytes(),
);
let _ = board.mqtt_publish(&config, "/errorlog", format!("{:?}", err).as_bytes());
}
};
match board.max_milli_ampere_hour() {
Ok(v) => {
let _ = board.mqtt_publish(
&config,
"/battery/max_milli_ampere_hour",
v.to_string().as_bytes(),
);
}
Err(err) => {
let _ = board.mqtt_publish(&config, "/battery/max_milli_ampere_hour", "-1".as_bytes());
let _ = board.mqtt_publish(&config, "/errorlog", format!("{:?}", err).as_bytes());
}
};
match board.remaining_milli_ampere_hour() {
Ok(v) => {
let _ = board.mqtt_publish(
&config,
"/battery/remaining_milli_ampere_hour",
v.to_string().as_bytes(),
);
}
Err(err) => {
let _ = board.mqtt_publish(
&config,
"/battery/remaining_milli_ampere_hour",
"-1".as_bytes(),
);
let _ = board.mqtt_publish(&config, "/errorlog", format!("{:?}", err).as_bytes());
}
};
match board.state_charge_percent() {
Ok(v) => {
let _ = board.mqtt_publish(
&config,
"/battery/state_charge_percent",
v.to_string().as_bytes(),
);
}
Err(err) => {
let _ = board.mqtt_publish(&config, "/battery/state_charge_percent", "-1".as_bytes());
let _ = board.mqtt_publish(&config, "/errorlog", format!("{:?}", err).as_bytes());
}
};
match board.state_health_percent() {
Ok(v) => {
let _ = board.mqtt_publish(
&config,
"/battery/state_health_percent",
v.to_string().as_bytes(),
);
}
Err(err) => {
let _ = board.mqtt_publish(&config, "/battery/state_health_percent", "-1".as_bytes());
let _ = board.mqtt_publish(&config, "/errorlog", format!("{:?}", err).as_bytes());
println!("Error publishing battery_state {}", err);
}
};
}
@@ -722,6 +613,7 @@ fn determine_tank_state(
"Low water, current percent is {}, minimum warn level is {}",
percent as u8, config.tank_warn_percent
);
rv.warn_level = true;
}
if config.tank_empty_percent < percent as u8 {
println!(
@@ -743,6 +635,7 @@ fn determine_tank_state(
return rv;
}
return TankState {
warn_level: false,
enough_water: true,
left_ml: 1337,
sensor_error: false,
@@ -750,64 +643,18 @@ fn determine_tank_state(
};
}
fn map_range(from_range: (f32, f32), s: f32) -> anyhow::Result<f32> {
if s < from_range.0 {
anyhow::bail!(
"Value out of range, min {} but current is {}",
from_range.0,
s
);
}
if s > from_range.1 {
anyhow::bail!(
"Value out of range, max {} but current is {}",
from_range.1,
s
);
}
return Ok(TO.0 + (s - from_range.0) * (TO.1 - TO.0) / (from_range.1 - from_range.0));
}
fn map_range_moisture(s: f32) -> Result<u8, SensorError> {
if s < FROM.0 {
return Err(SensorError::OpenCircuit { hz: s, min: FROM.0 });
}
if s > FROM.1 {
return Err(SensorError::ShortCircuit { hz: s, max: FROM.1 });
}
let tmp = TO.0 + (s - FROM.0) * (TO.1 - TO.0) / (FROM.1 - FROM.0);
return Ok(tmp as u8);
}
fn in_time_range(cur: DateTime<Tz>, start: u8, end: u8) -> bool {
let curhour = cur.hour() as u8;
//eg 10-14
if start < end {
return curhour > start && curhour < end;
} else {
//eg 20-05
return curhour > start || curhour < end;
}
}
fn option_to_string(value: Option<u8>) -> String {
match value {
Some(v) => v.to_string(),
None => "Error".to_owned(),
}
}
fn determine_state_target_moisture_for_plant(
board: &mut std::sync::MutexGuard<'_, PlantCtrlBoard<'_>>,
plant: usize,
state: &mut PlantState,
config: &Config,
tank_state: &TankState,
water_frozen: bool,
cur: DateTime<Tz>,
) {
let plant_config = &config.plants[plant];
if plant_config.mode == Mode::OFF {
return;
}
match board.measure_moisture_hz(plant, plant_hal::Sensor::A) {
Ok(a) => {
let mapped = map_range_moisture(a as f32);
@@ -873,21 +720,14 @@ fn determine_state_target_moisture_for_plant(
}
if !in_time_range(
cur,
&cur,
plant_config.pump_hour_start,
plant_config.pump_hour_end,
) {
state.out_of_work_hour = true;
}
if water_frozen {
state.frozen = true;
}
if state.dry && !state.no_water && !state.cooldown && !state.out_of_work_hour {
if water_frozen {
state.frozen = true;
} else {
state.do_water = true;
}
state.do_water = true;
}
}
@@ -897,7 +737,6 @@ fn determine_state_timer_only_for_plant(
state: &mut PlantState,
config: &Config,
tank_state: &TankState,
water_frozen: bool,
cur: DateTime<Tz>,
) {
let plant_config = &config.plants[plant];
@@ -912,14 +751,10 @@ fn determine_state_timer_only_for_plant(
state.next_pump = Some(europe_time);
state.cooldown = true;
} else {
if water_frozen {
state.frozen = true;
} else {
if tank_state.sensor_error && !config.tank_allow_pumping_if_sensor_error {
state.do_water = true;
} else if !tank_state.enough_water {
state.no_water = true;
}
if tank_state.sensor_error && !config.tank_allow_pumping_if_sensor_error {
state.do_water = true;
} else if !tank_state.enough_water {
state.no_water = true;
}
}
}
@@ -940,7 +775,6 @@ fn determine_state_timer_and_deadzone_for_plant(
state: &mut PlantState,
config: &Config,
tank_state: &TankState,
water_frozen: bool,
cur: DateTime<Tz>,
) {
let plant_config = &config.plants[plant];
@@ -956,21 +790,17 @@ fn determine_state_timer_and_deadzone_for_plant(
state.cooldown = true;
}
if !in_time_range(
cur,
&cur,
plant_config.pump_hour_start,
plant_config.pump_hour_end,
) {
state.out_of_work_hour = true;
}
if !state.cooldown && !state.out_of_work_hour {
if water_frozen {
state.frozen = true;
} else {
if tank_state.sensor_error && !config.tank_allow_pumping_if_sensor_error {
state.do_water = true;
} else if !tank_state.enough_water {
state.no_water = true;
}
if tank_state.sensor_error && !config.tank_allow_pumping_if_sensor_error {
state.do_water = true;
} else if !tank_state.enough_water {
state.no_water = true;
}
}
}
@@ -1000,43 +830,20 @@ fn determine_next_plant(
config::Mode::OFF => {}
config::Mode::TargetMoisture => {
determine_state_target_moisture_for_plant(
board,
plant,
state,
config,
tank_state,
water_frozen,
cur,
board, plant, state, config, tank_state, cur,
);
}
config::Mode::TimerOnly => {
determine_state_timer_only_for_plant(
board,
plant,
state,
config,
tank_state,
water_frozen,
cur,
);
determine_state_timer_only_for_plant(board, plant, state, config, tank_state, cur);
}
config::Mode::TimerAndDeadzone => {
determine_state_timer_and_deadzone_for_plant(
board,
plant,
state,
config,
tank_state,
water_frozen,
cur,
board, plant, state, config, tank_state, cur,
);
}
}
if state.sensor_error_a.is_some()
|| state.sensor_error_b.is_some()
|| state.sensor_error_p.is_some()
{
if state.sensor_error_a.is_some() || state.sensor_error_b.is_some() {
board.fault(plant, true);
}
if !state.dry {
@@ -1051,8 +858,10 @@ fn determine_next_plant(
"Checking for water plant {} with state {}",
plant, state.do_water
);
if state.do_water {
return Some(plant);
if !water_frozen {
if state.do_water {
return Some(plant);
}
}
}
println!("No plant needs water");
@@ -1068,155 +877,38 @@ fn update_plant_state(
let state = &plantstate[plant];
let plant_config = config.plants[plant];
let _ = board.mqtt_publish(
&config,
format!("/plant{}/mode", plant + 1).as_str(),
match plant_config.mode {
config::Mode::OFF => "OFF".as_bytes(),
config::Mode::TargetMoisture => "TargetMoisture".as_bytes(),
config::Mode::TimerOnly => "TimerOnly".as_bytes(),
config::Mode::TimerAndDeadzone => "TimerAndDeadzone".as_bytes(),
},
);
let mode = format!("{:?}", plant_config.mode);
let last_time = board.last_pump_time(plant);
match last_time {
Some(last_time) => {
let europe_time = last_time.with_timezone(&Berlin);
if europe_time.year() > 2023 {
let time = europe_time.to_rfc3339();
let _ = board.mqtt_publish(
&config,
format!("/plant{}/last pump", plant + 1).as_str(),
time.as_bytes(),
);
} else {
let _ = board.mqtt_publish(
&config,
format!("/plant{}/last pump", plant + 1).as_str(),
"N/A".as_bytes(),
);
}
}
None => {
let _ = board.mqtt_publish(
&config,
format!("/plant{}/last pump", plant + 1).as_str(),
"N/A".as_bytes(),
);
}
}
let plant_dto = PlantStateMQTT {
a: &sensor_to_string(
&state.a,
&state.sensor_error_a,
plant_config.mode != Mode::OFF,
),
b: &sensor_to_string(&state.b, &state.sensor_error_b, plant_config.sensor_b),
active: state.active,
mode: &mode,
last_pump: &time_to_string_utc(board.last_pump_time(plant)),
next_pump: &time_to_string(state.next_pump),
consecutive_pump_count: state.consecutive_pump_count,
cooldown: state.cooldown,
dry: state.dry,
not_effective: state.not_effective,
out_of_work_hour: state.out_of_work_hour,
pump_error: state.pump_error,
};
match state.next_pump {
Some(next) => {
let time = next.to_rfc3339();
let _ = board.mqtt_publish(
&config,
format!("/plant{}/next pump", plant + 1).as_str(),
time.as_bytes(),
);
match serde_json::to_string(&plant_dto) {
Ok(state) => {
let plant_topic = format!("/plant{}", plant + 1);
let _ = board.mqtt_publish(&config, &plant_topic, state.as_bytes());
//reduce speed as else messages will be dropped
Delay::new_default().delay_ms(200);
}
None => {
let _ = board.mqtt_publish(
&config,
format!("/plant{}/next pump", plant + 1).as_str(),
"N/A".as_bytes(),
);
Err(err) => {
println!("Error publishing lightstate {}", err);
}
}
let _ = board.mqtt_publish(
config,
format!("/plant{}/active", plant + 1).as_str(),
state.active.to_string().as_bytes(),
);
let _ = board.mqtt_publish(
config,
format!("/plant{}/Sensor A", plant + 1).as_str(),
option_to_string(state.a).as_bytes(),
);
if plant_config.sensor_b {
let _ = board.mqtt_publish(
config,
format!("/plant{}/Sensor B", plant + 1).as_str(),
option_to_string(state.b).as_bytes(),
);
} else {
let _ = board.mqtt_publish(
config,
format!("/plant{}/Sensor B", plant + 1).as_str(),
"disabled".as_bytes(),
);
}
if plant_config.sensor_p {
let _ = board.mqtt_publish(
config,
format!("/plant{}/Sensor P before", plant + 1).as_str(),
option_to_string(state.p).as_bytes(),
);
let _ = board.mqtt_publish(
config,
format!("/plant{}/Sensor P after", plant + 1).as_str(),
option_to_string(state.after_p).as_bytes(),
);
} else {
let _ = board.mqtt_publish(
config,
format!("/plant{}/Sensor P before", plant + 1).as_str(),
"disabled".as_bytes(),
);
let _ = board.mqtt_publish(
config,
format!("/plant{}/Sensor P after", plant + 1).as_str(),
"disabled".as_bytes(),
);
}
let _ = board.mqtt_publish(
config,
format!("/plant{}/Should water", plant + 1).as_str(),
state.do_water.to_string().as_bytes(),
);
let _ = board.mqtt_publish(
config,
format!("/plant{}/Is frozen", plant + 1).as_str(),
state.frozen.to_string().as_bytes(),
);
let _ = board.mqtt_publish(
config,
format!("/plant{}/Is dry", plant + 1).as_str(),
state.dry.to_string().as_bytes(),
);
let _ = board.mqtt_publish(
config,
format!("/plant{}/Pump Error", plant + 1).as_str(),
state.pump_error.to_string().as_bytes(),
);
let _ = board.mqtt_publish(
config,
format!("/plant{}/Pump Ineffective", plant + 1).as_str(),
state.not_effective.to_string().as_bytes(),
);
let _ = board.mqtt_publish(
config,
format!("/plant{}/Is in Cooldown", plant + 1).as_str(),
state.cooldown.to_string().as_bytes(),
);
let _ = board.mqtt_publish(
config,
format!("/plant{}/No Water", plant + 1).as_str(),
state.no_water.to_string().as_bytes(),
);
let _ = board.mqtt_publish(
config,
format!("/plant{}/Out of Work Hour", plant + 1).as_str(),
state.out_of_work_hour.to_string().as_bytes(),
);
let _ = board.mqtt_publish(
config,
format!("/plant{}/consecutive pump count", plant + 1).as_str(),
state.consecutive_pump_count.to_string().as_bytes(),
);
};
}
}
@@ -1274,7 +966,87 @@ fn main() {
}
}
}
//error codes
//error_reading_config_after_upgrade
//error_no_config_after_upgrade
//error_tank_sensor_fault
fn time_to_string_utc(value_option: Option<DateTime<Utc>>) -> String {
let converted = value_option.and_then(|utc| Some(utc.with_timezone(&Berlin)));
return time_to_string(converted);
}
fn time_to_string(value_option: Option<DateTime<Tz>>) -> String {
match value_option {
Some(value) => {
let europe_time = value.with_timezone(&Berlin);
if europe_time.year() > 2023 {
return europe_time.to_rfc3339();
} else {
//initial value of 0 in rtc memory
return "N/A".to_owned();
}
}
None => return "N/A".to_owned(),
};
}
fn sensor_to_string(value: &Option<u8>, error: &Option<SensorError>, enabled: bool) -> String {
if enabled {
match error {
Some(error) => return format!("{:?}", error),
None => match value {
Some(v) => return v.to_string(),
None => return "Error".to_owned(),
},
}
} else {
return "disabled".to_owned();
};
}
fn to_string<T: Display>(value: &Result<T>) -> String {
return match value {
Ok(v) => v.to_string(),
Err(err) => {
format!("{:?}", err)
}
};
}
fn map_range(from_range: (f32, f32), s: f32) -> anyhow::Result<f32> {
if s < from_range.0 {
anyhow::bail!(
"Value out of range, min {} but current is {}",
from_range.0,
s
);
}
if s > from_range.1 {
anyhow::bail!(
"Value out of range, max {} but current is {}",
from_range.1,
s
);
}
return Ok(TO.0 + (s - from_range.0) * (TO.1 - TO.0) / (from_range.1 - from_range.0));
}
fn map_range_moisture(s: f32) -> Result<u8, SensorError> {
if s < FROM.0 {
return Err(SensorError::OpenCircuit { hz: s, min: FROM.0 });
}
if s > FROM.1 {
return Err(SensorError::ShortCircuit { hz: s, max: FROM.1 });
}
let tmp = TO.0 + (s - FROM.0) * (TO.1 - TO.0) / (FROM.1 - FROM.0);
return Ok(tmp as u8);
}
fn in_time_range(cur: &DateTime<Tz>, start: u8, end: u8) -> bool {
let curhour = cur.hour() as u8;
//eg 10-14
if start < end {
return curhour > start && curhour < end;
} else {
//eg 20-05
return curhour > start || curhour < end;
}
}

View File

@@ -1,5 +1,5 @@
use bq34z100::{Bq34Z100Error, Bq34z100g1, Bq34z100g1Driver};
//mod config;
use chrono_tz::Europe::Berlin;
use embedded_svc::wifi::{
AccessPointConfiguration, AccessPointInfo, AuthMethod, ClientConfiguration, Configuration,
@@ -17,7 +17,7 @@ use esp_idf_svc::mqtt::client::{EspMqttClient, LwtConfiguration, MqttClientConfi
use esp_idf_svc::nvs::EspDefaultNvsPartition;
use esp_idf_svc::wifi::config::{ScanConfig, ScanType};
use esp_idf_svc::wifi::EspWifi;
use measurements::{Frequency, Temperature};
use measurements::Temperature;
use plant_ctrl2::sipo::ShiftRegister40;
use anyhow::anyhow;
@@ -50,13 +50,8 @@ use one_wire_bus::OneWire;
use crate::config::{self, Config, WifiConfig};
use crate::STAY_ALIVE;
//Only support for 8 right now!
pub const PLANT_COUNT: usize = 8;
const PINS_PER_PLANT: usize = 5;
const PLANT_PUMP_OFFSET: usize = 0;
const PLANT_FAULT_OFFSET: usize = 1;
const PLANT_MOIST_PUMP_OFFSET: usize = 2;
const PLANT_MOIST_A_OFFSET: usize = 3;
const PLANT_MOIST_B_OFFSET: usize = 4;
const SPIFFS_PARTITION_NAME: &str = "storage";
const WIFI_CONFIG_FILE: &str = "/spiffs/wifi.cfg";
@@ -64,6 +59,51 @@ const CONFIG_FILE: &str = "/spiffs/config.cfg";
const TANK_MULTI_SAMPLE: usize = 11;
const PUMP8_BIT: usize = 0;
const PUMP1_BIT: usize = 1;
const PUMP2_BIT: usize = 2;
const PUMP3_BIT: usize = 3;
const PUMP4_BIT: usize = 4;
const PUMP5_BIT: usize = 5;
const PUMP6_BIT: usize = 6;
const PUMP7_BIT: usize = 7;
const MS_0: usize = 8;
const MS_4: usize = 9;
const MS_2: usize = 10;
const MS_3: usize = 11;
const SENSOR_ON: usize = 12;
const MS_1: usize = 13;
//unused 14
//unused 15
const FAULT_3: usize = 16;
const FAULT_8: usize = 17;
const FAULT_7: usize = 18;
const FAULT_6: usize = 19;
const FAULT_5: usize = 20;
const FAULT_4: usize = 21;
const FAULT_1: usize = 22;
const FAULT_2: usize = 23;
const SENSOR_A_1: u8 = 7;
const SENSOR_A_2: u8 = 6;
const SENSOR_A_3: u8 = 5;
const SENSOR_A_4: u8 = 4;
const SENSOR_A_5: u8 = 3;
const SENSOR_A_6: u8 = 2;
const SENSOR_A_7: u8 = 1;
const SENSOR_A_8: u8 = 0;
const SENSOR_B_1: u8 = 8;
const SENSOR_B_2: u8 = 9;
const SENSOR_B_3: u8 = 10;
const SENSOR_B_4: u8 = 11;
const SENSOR_B_5: u8 = 12;
const SENSOR_B_6: u8 = 13;
const SENSOR_B_7: u8 = 14;
const SENSOR_B_8: u8 = 15;
#[link_section = ".rtc.data"]
static mut LAST_WATERING_TIMESTAMP: [i64; PLANT_COUNT] = [0; PLANT_COUNT];
#[link_section = ".rtc.data"]
@@ -88,7 +128,6 @@ pub enum ClearConfigType {
pub enum Sensor {
A,
B,
PUMP,
}
pub trait PlantCtrlBoardInteraction {
fn time(&mut self) -> Result<chrono::DateTime<Utc>>;
@@ -125,7 +164,7 @@ pub trait PlantCtrlBoardInteraction {
//keep state during deepsleep
fn light(&mut self, enable: bool) -> Result<()>;
fn measure_moisture_hz(&self, plant: usize, sensor: Sensor) -> Result<i32>;
fn measure_moisture_hz(&mut self, plant: usize, sensor: Sensor) -> Result<i32>;
fn pump(&self, plant: usize, enable: bool) -> Result<()>;
fn last_pump_time(&self, plant: usize) -> Option<chrono::DateTime<Utc>>;
fn store_last_pump_time(&mut self, plant: usize, time: chrono::DateTime<Utc>);
@@ -149,6 +188,8 @@ pub trait PlantCtrlBoardInteraction {
fn is_wifi_config_file_existant(&mut self) -> bool;
fn mqtt(&mut self, config: &Config) -> Result<()>;
fn mqtt_publish(&mut self, config: &Config, subtopic: &str, message: &[u8]) -> Result<()>;
fn sensor_multiplexer(&mut self, n: u8) -> Result<()>;
}
pub trait CreatePlantHal<'a> {
@@ -266,7 +307,17 @@ impl PlantCtrlBoardInteraction for PlantCtrlBoard<'_> {
}
fn pump(&self, plant: usize, enable: bool) -> Result<()> {
let index = plant * PINS_PER_PLANT + PLANT_PUMP_OFFSET;
let index = match plant {
0 => PUMP1_BIT,
1 => PUMP2_BIT,
2 => PUMP3_BIT,
3 => PUMP4_BIT,
4 => PUMP5_BIT,
5 => PUMP6_BIT,
6 => PUMP7_BIT,
7 => PUMP8_BIT,
_ => bail!("Invalid pump {plant}",),
};
//currently infailable error, keep for future as result anyway
self.shift_register.decompose()[index].set_state(enable.into())?;
Ok(())
@@ -296,7 +347,17 @@ impl PlantCtrlBoardInteraction for PlantCtrlBoard<'_> {
}
fn fault(&self, plant: usize, enable: bool) {
let index = plant * PINS_PER_PLANT + PLANT_FAULT_OFFSET;
let index = match plant {
0 => FAULT_1,
1 => FAULT_2,
2 => FAULT_3,
3 => FAULT_4,
4 => FAULT_5,
5 => FAULT_6,
6 => FAULT_7,
7 => FAULT_8,
_ => panic!("Invalid plant id {}", plant)
};
self.shift_register.decompose()[index]
.set_state(enable.into())
.unwrap()
@@ -338,28 +399,58 @@ impl PlantCtrlBoardInteraction for PlantCtrlBoard<'_> {
self.time()
}
fn measure_moisture_hz(&self, plant: usize, sensor: Sensor) -> Result<i32> {
fn measure_moisture_hz(&mut self, plant: usize, sensor: Sensor) -> Result<i32> {
self.signal_counter.counter_pause()?;
self.signal_counter.counter_clear()?;
//
let offset = match sensor {
Sensor::A => PLANT_MOIST_A_OFFSET,
Sensor::B => PLANT_MOIST_B_OFFSET,
Sensor::PUMP => PLANT_MOIST_PUMP_OFFSET,
//Disable all
self.shift_register.decompose()[SENSOR_ON]
.set_high()
.unwrap();
let sensor_channel = match sensor {
Sensor::A => match plant {
0 => SENSOR_A_1,
1 => SENSOR_A_2,
2 => SENSOR_A_3,
3 => SENSOR_A_4,
4 => SENSOR_A_5,
5 => SENSOR_A_6,
6 => SENSOR_A_7,
7 => SENSOR_A_8,
_ => bail!("Invalid plant id {}", plant)
},
Sensor::B => match plant {
0 => SENSOR_B_1,
1 => SENSOR_B_2,
2 => SENSOR_B_3,
3 => SENSOR_B_4,
4 => SENSOR_B_5,
5 => SENSOR_B_6,
6 => SENSOR_B_7,
7 => SENSOR_B_8,
_ => bail!("Invalid plant id {}", plant)
},
};
let index = plant * PINS_PER_PLANT + offset;
self.sensor_multiplexer(sensor_channel)?;
self.shift_register.decompose()[SENSOR_ON]
.set_low()
.unwrap();
let delay = Delay::new_default();
let measurement = 100;
let factor = 1000 as f32 / measurement as f32;
self.shift_register.decompose()[index].set_high().unwrap();
//give some time to stabilize
delay.delay_ms(10);
self.signal_counter.counter_resume()?;
delay.delay_ms(measurement);
self.signal_counter.counter_pause()?;
self.shift_register.decompose()[index].set_low().unwrap();
self.shift_register.decompose()[SENSOR_ON]
.set_high()
.unwrap();
let unscaled = self.signal_counter.get_counter_value()? as i32;
let hz = (unscaled as f32 * factor) as i32;
println!("Measuring {:?} @ {} with {}", sensor, plant, hz);
@@ -367,7 +458,9 @@ impl PlantCtrlBoardInteraction for PlantCtrlBoard<'_> {
}
fn general_fault(&mut self, enable: bool) {
unsafe { gpio_hold_dis(self.general_fault.pin()) };
self.general_fault.set_state(enable.into()).unwrap();
unsafe { gpio_hold_en(self.general_fault.pin()) };
}
fn wifi_ap(&mut self) -> Result<()> {
@@ -603,10 +696,6 @@ impl PlantCtrlBoardInteraction for PlantCtrlBoard<'_> {
for i in 0..8 {
self.measure_moisture_hz(i, Sensor::B)?;
}
for i in 0..8 {
self.measure_moisture_hz(i, Sensor::PUMP)?;
}
Ok(())
}
@@ -801,7 +890,7 @@ impl PlantCtrlBoardInteraction for PlantCtrlBoard<'_> {
};
}
None => {
bail!("No mqtt client, aborting publish");
bail!("No mqtt client");
}
}
}
@@ -885,6 +974,37 @@ impl PlantCtrlBoardInteraction for PlantCtrlBoard<'_> {
None => bail!("Error reading State of Health bq34z100 not found"),
}
}
fn sensor_multiplexer(&mut self, n: u8) -> Result<()> {
assert!(n < 16);
let is_bit_set = |b: u8| -> bool { n & (1 << b) != 0 };
let pin_0 = &mut self.shift_register.decompose()[MS_0];
let pin_1 = &mut self.shift_register.decompose()[MS_1];
let pin_2 = &mut self.shift_register.decompose()[MS_2];
let pin_3 = &mut self.shift_register.decompose()[MS_3];
if is_bit_set(0) {
pin_0.set_high()?;
} else {
pin_0.set_low()?;
}
if is_bit_set(1) {
pin_1.set_high()?;
} else {
pin_1.set_low()?;
}
if is_bit_set(2) {
pin_2.set_high()?;
} else {
pin_2.set_low()?;
}
if is_bit_set(3) {
pin_3.set_high()?;
} else {
pin_3.set_low()?;
}
Ok(())
}
}
fn print_battery(
@@ -986,8 +1106,11 @@ impl CreatePlantHal<'_> for PlantHal {
let mut one_wire_pin = PinDriver::input_output_od(peripherals.pins.gpio18)?;
one_wire_pin.set_pull(Pull::Floating).unwrap();
//TODO make to none if not possible to init
//disable all
let ms4 = &mut shift_register.decompose()[MS_4];
ms4.set_high()?;
//init,reset rtc memory depending on cause
let reasons = ResetReason::get();
let reset_store = match reasons {