smooth battery sensor

This commit is contained in:
Your Name 2021-10-22 15:52:19 +02:00
parent ecc03e9cb4
commit f30a0a0c78
3 changed files with 53 additions and 37 deletions

View File

@ -9,6 +9,7 @@
#include <Arduino.h>
#include <OneWire.h>
#include "RunningMedian.h"
#define DS2438_TEMPERATURE_CONVERSION_COMMAND 0x44
#define DS2438_VOLTAGE_CONVERSION_COMMAND 0xb4
@ -30,6 +31,9 @@
#define DS2438_TEMPERATURE_DELAY 10
#define DS2438_VOLTAGE_CONVERSION_DELAY 8
#define DS2438_MEDIAN_COUNT 5
#define DS2438_MEDIAN_DELAY 50
#define DEFAULT_PAGE0(var) uint8_t var[8] { \
0b00001011 /* X, ADB=0, NVB=0, TB=0, AD=1, EE=0, CA=1, IAD=1 */, \
0, /* Temperatur */ \
@ -70,7 +74,7 @@ class DS2438 {
DS2438(OneWire *ow, float currentShunt, int retryOnCRCError);
void begin();
void update();
void updateMultiple();
double getTemperature();
float getVoltage(int channel=DS2438_CHA);
float getCurrent();
@ -83,15 +87,15 @@ class DS2438 {
private:
bool validAddress(const uint8_t*);
bool validFamily(const uint8_t* deviceAddress);
void update(bool firstIteration);
bool deviceFound = false;
OneWire *_ow;
DeviceAddress _address;
uint8_t _mode;
double _temperature;
float _voltageA;
float _voltageB;
float _current;
RunningMedian _temperature = RunningMedian(DS2438_MEDIAN_COUNT*2);
RunningMedian _voltageA = RunningMedian(DS2438_MEDIAN_COUNT);
RunningMedian _voltageB = RunningMedian(DS2438_MEDIAN_COUNT);
RunningMedian _current = RunningMedian(DS2438_MEDIAN_COUNT);
float _currentShunt;
int _retryOnCRCError;
long _CCA;

View File

@ -35,9 +35,9 @@ void DS2438::begin(){
_ow->reset_search();
memset(searchDeviceAddress,0, 8);
_temperature = 0;
_voltageA = 0.0;
_voltageB = 0.0;
_temperature.clear();
_voltageA.clear();
_voltageB.clear();
_error = true;
_mode = (DS2438_MODE_CHA | DS2438_MODE_CHB | DS2438_MODE_TEMPERATURE);
@ -72,10 +72,20 @@ bool DS2438::validFamily(const uint8_t* deviceAddress) {
}
}
void DS2438::update() {
uint8_t data[9];
void DS2438::updateMultiple(){
for(int i = 0;i< DS2438_MEDIAN_COUNT; i++){
update(i==0);
if(_error){
return;
}
delay(DS2438_MEDIAN_DELAY);
}
}
void DS2438::update(bool firstIteration) {
uint8_t data[9];
_error = true;
if(!isFound()){
return;
}
@ -93,10 +103,10 @@ void DS2438::update() {
}
if (doTemperature) {
_temperature = (double)(((((int16_t)data[2]) << 8) | (data[1] & 0x0ff)) >> 3) * 0.03125;
_temperature.add((double)(((((int16_t)data[2]) << 8) | (data[1] & 0x0ff)) >> 3) * 0.03125);
}
if (_mode & DS2438_MODE_CHA) {
_voltageA = (((data[4] << 8) & 0x00300) | (data[3] & 0x0ff)) / 100.0;
_voltageA.add((((data[4] << 8) & 0x00300) | (data[3] & 0x0ff)) / 100.0);
}
}
if (_mode & DS2438_MODE_CHB) {
@ -113,33 +123,35 @@ void DS2438::update() {
int16_t upperByte = ((int16_t)data[2]) << 8;
int16_t lowerByte = data[1] >> 3;
int16_t fullByte = (upperByte | lowerByte);
_temperature = ((double)fullByte) * 0.03125;
_temperature.add(((double)fullByte) * 0.03125);
}
_voltageB = (((data[4] << 8) & 0x00300) | (data[3] & 0x0ff)) / 100.0;
_voltageB.add((((data[4] << 8) & 0x00300) | (data[3] & 0x0ff)) / 100.0);
}
int16_t upperByte = ((int16_t)data[6]) << 8;
int16_t lowerByte = data[5];
int16_t fullByte = (int16_t)(upperByte | lowerByte);
float fullByteb = fullByte;
_current = (fullByteb) / ((4096.0f * _currentShunt));
_current.add((fullByteb) / ((4096.0f * _currentShunt)));
if(firstIteration){
if (readPage(1, data)){
PageOne_t *pOne = (PageOne_t *) data;
_ICA = pOne->ICA;
}
if (readPage(7, data)){
PageSeven_t *pSeven = (PageSeven_t *) data;
_CCA = pSeven->CCA0 | ((int16_t) pSeven->CCA1) << 8;
_DCA = pSeven->DCA0 | ((int16_t) pSeven->DCA1) << 8;
}
}
_error = false;
if (readPage(1, data)){
PageOne_t *pOne = (PageOne_t *) data;
_ICA = pOne->ICA;
}
if (readPage(7, data)){
PageSeven_t *pSeven = (PageSeven_t *) data;
_CCA = pSeven->CCA0 | ((int16_t) pSeven->CCA1) << 8;
_DCA = pSeven->DCA0 | ((int16_t) pSeven->DCA1) << 8;
}
}
double DS2438::getTemperature() {
return _temperature;
return _temperature.getMedian();
}
float DS2438::getAh(){
@ -161,16 +173,16 @@ long DS2438::getCCA(){
float DS2438::getVoltage(int channel) {
if (channel == DS2438_CHA) {
return _voltageA;
return _voltageA.getMedian();
} else if (channel == DS2438_CHB) {
return _voltageB;
return _voltageB.getMedian();
} else {
return 0.0;
}
}
float DS2438::getCurrent() {
return _current;
return _current.getMedian();
}
boolean DS2438::isError() {

View File

@ -233,7 +233,7 @@ void readOneWireSensors()
}
}
battery.update();
battery.updateMultiple();
mSolarVoltage = battery.getVoltage(BATTSENSOR_INDEX_SOLAR) * SOLAR_VOLT_FACTOR;
Serial.flush();
@ -888,7 +888,7 @@ void plantcontrol()
readOneWireSensors();
Serial << "W : " << waterRawSensor.getAverage() << " cm (" << String(waterLevelMax.get() - waterRawSensor.getAverage()) << "%)" << endl;
Serial << "W : " << waterRawSensor.getMedian() << " cm (" << String(waterLevelMax.get() - waterRawSensor.getMedian ()) << "%)" << endl;
float batteryVoltage = battery.getVoltage(BATTSENSOR_INDEX_BATTERY);
float chipTemp = battery.getTemperature();
@ -896,14 +896,14 @@ void plantcontrol()
if (aliveWasRead())
{
float remaining = waterLevelMax.get() - waterRawSensor.getAverage();
float remaining = waterLevelMax.get() - waterRawSensor.getMedian();
if (!isnan(remaining))
{
sensorWater.setProperty("remaining").send(String(remaining));
}
if (!isnan(waterRawSensor.getAverage()))
if (!isnan(waterRawSensor.getMedian()))
{
sensorWater.setProperty("distance").send(String(waterRawSensor.getAverage()));
sensorWater.setProperty("distance").send(String(waterRawSensor.getMedian()));
}
sensorLipo.setProperty("percent").send(String(100 * batteryVoltage / VOLT_MAX_BATT));
sensorLipo.setProperty("volt").send(String(batteryVoltage));