Modes still not working

This commit is contained in:
c3ma 2020-10-16 20:36:07 +02:00
parent 8d70f55548
commit 80018fc5d5
3 changed files with 326 additions and 56 deletions

View File

@ -0,0 +1,78 @@
#pragma once
//
// FILE: RunningMedian.h
// AUTHOR: Rob dot Tillaart at gmail dot com
// PURPOSE: RunningMedian library for Arduino
// VERSION: 0.2.1
// URL: https://github.com/RobTillaart/RunningMedian
// URL: http://arduino.cc/playground/Main/RunningMedian
// HISTORY: See RunningMedian.cpp
//
#include "Arduino.h"
#define RUNNING_MEDIAN_VERSION "0.2.1"
// prepare for dynamic version
// not tested ==> use at own risk :)
// #define RUNNING_MEDIAN_USE_MALLOC
// should at least be 5 to be practical,
// odd sizes results in a 'real' middle element and will be a bit faster.
// even sizes takes the average of the two middle elements as median
#define MEDIAN_MIN_SIZE 5
#define MEDIAN_MAX_SIZE 19
class RunningMedian
{
public:
// # elements in the internal buffer
explicit RunningMedian(const uint8_t size);
~RunningMedian();
// resets internal buffer and var
void clear();
// adds a new value to internal buffer, optionally replacing the oldest element.
void add(const float value);
// returns the median == middle element
float getMedian();
// returns average of the values in the internal buffer
float getAverage();
// returns average of the middle nMedian values, removes noise from outliers
float getAverage(uint8_t nMedian);
float getHighest() { return getSortedElement(_cnt - 1); };
float getLowest() { return getSortedElement(0); };
// get n'th element from the values in time order
float getElement(const uint8_t n);
// get n'th element from the values in size order
float getSortedElement(const uint8_t n);
// predict the max change of median after n additions
float predict(const uint8_t n);
uint8_t getSize() { return _size; };
// returns current used elements, getCount() <= getSize()
uint8_t getCount() { return _cnt; };
protected:
boolean _sorted;
uint8_t _size;
uint8_t _cnt;
uint8_t _idx;
#ifdef RUNNING_MEDIAN_USE_MALLOC
float * _ar;
uint8_t * _p;
#else
float _ar[MEDIAN_MAX_SIZE];
uint8_t _p[MEDIAN_MAX_SIZE];
#endif
void sort();
};
// END OF FILE

170
esp32/src/RunningMedian.cpp Normal file
View File

@ -0,0 +1,170 @@
//
// FILE: RunningMedian.cpp
// AUTHOR: Rob.Tillaart at gmail.com
// VERSION: 0.2.1
// PURPOSE: RunningMedian library for Arduino
//
// HISTORY:
// 0.1.00 - 2011-02-16 initial version
// 0.1.01 - 2011-02-22 added remarks from CodingBadly
// 0.1.02 - 2012-03-15 added
// 0.1.03 - 2013-09-30 added _sorted flag, minor refactor
// 0.1.04 - 2013-10-17 added getAverage(uint8_t) - kudo's to Sembazuru
// 0.1.05 - 2013-10-18 fixed bug in sort; removes default constructor; dynamic memory
// 0.1.06 - 2013-10-19 faster sort, dynamic arrays, replaced sorted float array with indirection array
// 0.1.07 - 2013-10-19 add correct median if _cnt is even.
// 0.1.08 - 2013-10-20 add getElement(), add getSottedElement() add predict()
// 0.1.09 - 2014-11-25 float to double (support ARM)
// 0.1.10 - 2015-03-07 fix clear
// 0.1.11 - 2015-03-29 undo 0.1.10 fix clear
// 0.1.12 - 2015-07-12 refactor constructor + const
// 0.1.13 - 2015-10-30 fix getElement(n) - kudos to Gdunge
// 0.1.14 - 2017-07-26 revert double to float - issue #33
// 0.1.15 - 2018-08-24 make runningMedian Configurable #110
// 0.2.0 2020-04-16 refactor.
// 0.2.1 2020-06-19 fix library.json
#include "RunningMedian.h"
RunningMedian::RunningMedian(const uint8_t size)
{
_size = constrain(size, MEDIAN_MIN_SIZE, MEDIAN_MAX_SIZE);
#ifdef RUNNING_MEDIAN_USE_MALLOC
_ar = (float *) malloc(_size * sizeof(float));
_p = (uint8_t *) malloc(_size * sizeof(uint8_t));
#endif
clear();
}
RunningMedian::~RunningMedian()
{
#ifdef RUNNING_MEDIAN_USE_MALLOC
free(_ar);
free(_p);
#endif
}
// resets all counters
void RunningMedian::clear()
{
_cnt = 0;
_idx = 0;
_sorted = false;
for (uint8_t i = 0; i < _size; i++)
{
_p[i] = i;
}
}
// adds a new value to the data-set
// or overwrites the oldest if full.
void RunningMedian::add(float value)
{
_ar[_idx++] = value;
if (_idx >= _size) _idx = 0; // wrap around
if (_cnt < _size) _cnt++;
_sorted = false;
}
float RunningMedian::getMedian()
{
if (_cnt == 0) return NAN;
if (_sorted == false) sort();
if (_cnt & 0x01) // is it odd sized?
{
return _ar[_p[_cnt / 2]];
}
return (_ar[_p[_cnt / 2]] + _ar[_p[_cnt / 2 - 1]]) / 2;
}
float RunningMedian::getAverage()
{
if (_cnt == 0) return NAN;
float sum = 0;
for (uint8_t i = 0; i < _cnt; i++)
{
sum += _ar[i];
}
return sum / _cnt;
}
float RunningMedian::getAverage(uint8_t nMedians)
{
if ((_cnt == 0) || (nMedians == 0)) return NAN;
if (_cnt < nMedians) nMedians = _cnt; // when filling the array for first time
uint8_t start = ((_cnt - nMedians) / 2);
uint8_t stop = start + nMedians;
if (_sorted == false) sort();
float sum = 0;
for (uint8_t i = start; i < stop; i++)
{
sum += _ar[_p[i]];
}
return sum / nMedians;
}
float RunningMedian::getElement(const uint8_t n)
{
if ((_cnt == 0) || (n >= _cnt)) return NAN;
uint8_t pos = _idx + n;
if (pos >= _cnt) // faster than %
{
pos -= _cnt;
}
return _ar[pos];
}
float RunningMedian::getSortedElement(const uint8_t n)
{
if ((_cnt == 0) || (n >= _cnt)) return NAN;
if (_sorted == false) sort();
return _ar[_p[n]];
}
// n can be max <= half the (filled) size
float RunningMedian::predict(const uint8_t n)
{
if ((_cnt == 0) || (n >= _cnt / 2)) return NAN;
float med = getMedian(); // takes care of sorting !
if (_cnt & 0x01)
{
return max(med - _ar[_p[_cnt / 2 - n]], _ar[_p[_cnt / 2 + n]] - med);
}
float f1 = (_ar[_p[_cnt / 2 - n]] + _ar[_p[_cnt / 2 - n - 1]]) / 2;
float f2 = (_ar[_p[_cnt / 2 + n]] + _ar[_p[_cnt / 2 + n - 1]]) / 2;
return max(med - f1, f2 - med) / 2;
}
void RunningMedian::sort()
{
// bubble sort with flag
for (uint8_t i = 0; i < _cnt - 1; i++)
{
bool flag = true;
for (uint8_t j = 1; j < _cnt - i; j++)
{
if (_ar[_p[j - 1]] > _ar[_p[j]])
{
uint8_t t = _p[j - 1];
_p[j - 1] = _p[j];
_p[j] = t;
flag = false;
}
}
if (flag) break;
}
_sorted = true;
}
// -- END OF FILE --

View File

@ -24,7 +24,11 @@ const unsigned long TEMPREADCYCLE = 30000; /**< Check temperature all half minut
#define TEMP_INIT_VALUE -999.0f
#define TEMP_MAX_VALUE 85.0f
RTC_DATA_ATTR bool coldBoot = false;
RTC_DATA_ATTR bool coldBoot = true;
bool warmBoot = true;
bool mode2Active = false;
bool mode3Active = false;
bool mLoopInited = false;
bool mDeepSleep = false;
@ -326,10 +330,16 @@ bool switch3Handler(const HomieRange& range, const String& value) {
return switchGeneralPumpHandler(2, range, value);
}
void systemInit(){
// Set default values
WiFi.mode(WIFI_STA);
Homie_setFirmware("PlantControl", FIRMWARE_VERSION);
Homie.setLoopFunction(loopHandler);
Homie.setup();
mConfigured = Homie.isConfigured();
// Set default values
deepSleepTime.setDefaultValue(300000); /* 5 minutes in milliseconds */
deepSleepNightTime.setDefaultValue(0);
wateringDeepSleep.setDefaultValue(60000); /* 1 minute in milliseconds */
@ -408,18 +418,32 @@ void systemInit(){
}
void mode1(){
bool mode1(){
Serial.println("Init mode 1");
readSensors();
//TODO evaluate if something is to do
return false;
}
void mode2(){
WiFi.mode(WIFI_STA);
Homie.setup();
Serial.println("Init mode 2");
mode2Active = true;
systemInit();
/* Jump into Mode 3, if not configured */
if (!mConfigured) {
mode2Active = false;
mode3Active = true;
}
}
void mode3(){
WiFi.mode(WIFI_STA);
Homie.setup();
Serial.println("Init mode 3");
mode3Active = true;
systemInit();
}
/**
@ -460,19 +484,12 @@ void setup() {
Serial << " | Update Limits.hpp : MAX_JSON_CONFIG_FILE_SIZE to 5000" << endl;
}
Homie_setFirmware("PlantControl", FIRMWARE_VERSION);
Homie.setLoopFunction(loopHandler);
mConfigured = Homie.isConfigured();
systemInit();
esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_PERIPH, ESP_PD_OPTION_OFF);
esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_SLOW_MEM, ESP_PD_OPTION_ON);
esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_FAST_MEM, ESP_PD_OPTION_OFF);
esp_sleep_pd_config(ESP_PD_DOMAIN_XTAL,ESP_PD_OPTION_ON);
mode2();
// Big TODO use here the settings in RTC_Memory
// Configure Deep Sleep:
if (mConfigured && (deepSleepNightTime.get() > 0) &&
@ -503,50 +520,55 @@ void setup() {
*/
void loop() {
if(!coldBoot){
coldBoot = true;
if(coldBoot){
coldBoot = false;
delay(1000);
digitalWrite(OUTPUT_SENSOR, LOW);
}
if (!mDeepSleep || !mConfigured) {
if ((digitalRead(BUTTON) == LOW) && (mButtonClicks % 2) == 0) {
mButtonClicks++;
switch(mButtonClicks) {
case 1:
case 3:
case 5:
mode3();
break;
default:
Serial << "No further tests! Please reboot" << endl;
if (digitalRead(BUTTON) == LOW){
for(int i = 0;i<10;i++){
digitalWrite(OUTPUT_SENSOR, LOW);
delay(50);
digitalWrite(OUTPUT_SENSOR, HIGH);
delay(50);
}
Serial.flush();
}else if (mButtonClicks > 0 && (digitalRead(BUTTON) == HIGH) && (mButtonClicks % 2) == 1) {
Serial << "Self Test Ended" << endl;
mButtonClicks++;
/* Always reset all outputs */
digitalWrite(OUTPUT_SENSOR, LOW);
for(int i=0; i < MAX_PLANTS; i++) {
digitalWrite(mPlants[i].getPumpPin(), LOW);
}
digitalWrite(OUTPUT_PUMP4, LOW);
} else if (mButtonClicks == 0) {
Homie.loop();
}
} else {
if (!mAlive) {
Serial << (millis()/ 1000) << "s running; sleeeping ..." << endl;
Serial.flush();
esp_deep_sleep_start();
mode3();
return;
} else {
mDeepSleep = false;
digitalWrite(OUTPUT_SENSOR, LOW);
}
}
if (((millis()) % 10000) == 0) {
/* tell everybody how long we are awoken */
stayAlive.setProperty("alive").send( String(millis()/ 1000) );
/* Perform the active modes (non mode1) */
if (mode3Active || mode2Active) {
Homie.loop();
if(!mode3Active){
/* Upgrade to mode 3 via reset */
if (digitalRead(BUTTON) == LOW){
coldBoot=true;
ESP.restart();
}
}
} else {
/* Check which mode shall be selected */
if(warmBoot){
warmBoot = false;
if(mode1()){
mode2();
} else {
/* Upgrade to mode 3 via reset */
if (digitalRead(BUTTON) == LOW){
coldBoot=true;
ESP.restart();
}
Serial.println("Nothing to do back to sleep");
Serial.flush();
esp_deep_sleep_start();
}
}
}
if(millis() > 30000 && !mode3Active){
Serial << (millis()/ 1000) << "s running; going to suicide ..." << endl;
Serial.flush();
esp_deep_sleep_start();
}
}