Files
PlantCtrl/rust/src/hal/v4_hal.rs
2025-10-08 19:48:13 +02:00

481 lines
16 KiB
Rust

use crate::bail;
use crate::config::PlantControllerConfig;
use crate::fat_error::{FatError, FatResult};
use crate::hal::battery::BatteryInteraction;
use crate::hal::esp::{hold_disable, hold_enable, Esp};
use crate::hal::rtc::RTCModuleInteraction;
use crate::hal::v4_sensor::{SensorImpl, SensorInteraction};
use crate::hal::water::TankSensor;
use crate::hal::{BoardInteraction, FreePeripherals, Sensor, I2C_DRIVER, PLANT_COUNT, TIME_ACCESS};
use crate::log::{LogMessage, LOG_ACCESS};
use alloc::boxed::Box;
use alloc::string::ToString;
use async_trait::async_trait;
use embassy_embedded_hal::shared_bus::blocking::i2c::I2cDevice;
use embassy_sync::blocking_mutex::raw::CriticalSectionRawMutex;
use embassy_time::Timer;
use esp_hal::gpio::{Flex, Input, InputConfig, Level, Output, OutputConfig, Pull};
use esp_hal::i2c::master::I2c;
use esp_hal::pcnt::channel::CtrlMode::Keep;
use esp_hal::pcnt::channel::EdgeMode::{Hold, Increment};
use esp_hal::twai::TwaiMode;
use esp_hal::{twai, Blocking};
use ina219::address::{Address, Pin};
use ina219::calibration::UnCalibrated;
use ina219::configuration::{Configuration, OperatingMode, Resolution};
use ina219::SyncIna219;
use measurements::Resistance;
use measurements::{Current, Voltage};
use pca9535::{GPIOBank, Pca9535Immediate, StandardExpanderInterface};
const MPPT_CURRENT_SHUNT_OHMS: f64 = 0.05_f64;
const TWAI_BAUDRATE: twai::BaudRate = twai::BaudRate::B125K;
pub enum Charger<'a> {
SolarMpptV1 {
mppt_ina: SyncIna219<
I2cDevice<'a, CriticalSectionRawMutex, I2c<'static, Blocking>>,
UnCalibrated,
>,
solar_is_day: Input<'a>,
charge_indicator: Output<'a>,
},
ErrorInit {},
}
impl<'a> Charger<'a> {
pub(crate) fn get_mppt_current(&mut self) -> FatResult<Current> {
match self {
Charger::SolarMpptV1 { mppt_ina, .. } => {
let v = mppt_ina.shunt_voltage()?;
let shunt_voltage = Voltage::from_microvolts(v.shunt_voltage_uv().abs() as f64);
let shut_value = Resistance::from_ohms(MPPT_CURRENT_SHUNT_OHMS);
let current = shunt_voltage.as_volts() / shut_value.as_ohms();
Ok(Current::from_amperes(current))
}
Charger::ErrorInit { .. } => {
bail!("hardware error during init");
}
}
}
pub(crate) fn get_mptt_voltage(&mut self) -> FatResult<Voltage> {
match self {
Charger::SolarMpptV1 { mppt_ina, .. } => {
let v = mppt_ina.bus_voltage()?;
Ok(Voltage::from_millivolts(v.voltage_mv() as f64))
}
Charger::ErrorInit { .. } => {
bail!("hardware error during init");
}
}
}
}
impl Charger<'_> {
pub(crate) fn power_save(&mut self) {
match self {
Charger::SolarMpptV1 { mppt_ina, .. } => {
let _ = mppt_ina
.set_configuration(Configuration {
reset: Default::default(),
bus_voltage_range: Default::default(),
shunt_voltage_range: Default::default(),
bus_resolution: Default::default(),
shunt_resolution: Default::default(),
operating_mode: OperatingMode::PowerDown,
})
.map_err(|e| {
log::info!(
"Error setting ina mppt configuration during deep sleep preparation{:?}",
e
);
});
}
_ => {}
}
}
fn set_charge_indicator(&mut self, charging: bool) -> FatResult<()> {
match self {
Self::SolarMpptV1 {
charge_indicator, ..
} => {
charge_indicator.set_level(charging.into());
}
_ => {}
}
Ok(())
}
fn is_day(&self) -> bool {
match self {
Charger::SolarMpptV1 { solar_is_day, .. } => solar_is_day.is_high(),
_ => true,
}
}
}
pub struct V4<'a> {
esp: Esp<'a>,
tank_sensor: TankSensor<'a>,
charger: Charger<'a>,
rtc_module: Box<dyn RTCModuleInteraction + Send>,
battery_monitor: Box<dyn BatteryInteraction + Send>,
config: PlantControllerConfig,
awake: Output<'a>,
light: Output<'a>,
general_fault: Output<'a>,
pump_expander: Pca9535Immediate<I2cDevice<'a, CriticalSectionRawMutex, I2c<'static, Blocking>>>,
pump_ina: Option<
SyncIna219<I2cDevice<'a, CriticalSectionRawMutex, I2c<'static, Blocking>>, UnCalibrated>,
>,
sensor: SensorImpl,
extra1: Output<'a>,
extra2: Output<'a>,
}
pub(crate) async fn create_v4(
peripherals: FreePeripherals<'static>,
esp: Esp<'static>,
config: PlantControllerConfig,
battery_monitor: Box<dyn BatteryInteraction + Send>,
rtc_module: Box<dyn RTCModuleInteraction + Send>,
) -> Result<Box<dyn BoardInteraction<'static> + Send + 'static>, FatError> {
log::info!("Start v4");
let mut awake = Output::new(peripherals.gpio21, Level::High, OutputConfig::default());
awake.set_high();
let mut general_fault = Output::new(peripherals.gpio23, Level::Low, OutputConfig::default());
general_fault.set_low();
let extra1 = Output::new(peripherals.gpio6, Level::Low, OutputConfig::default());
let extra2 = Output::new(peripherals.gpio15, Level::Low, OutputConfig::default());
let one_wire_pin = Flex::new(peripherals.gpio18);
let tank_power_pin = Output::new(peripherals.gpio11, Level::Low, OutputConfig::default());
let flow_sensor_pin = Input::new(
peripherals.gpio4,
InputConfig::default().with_pull(Pull::Up),
);
let tank_sensor = TankSensor::create(
one_wire_pin,
peripherals.adc1,
peripherals.gpio5,
tank_power_pin,
flow_sensor_pin,
peripherals.pcnt1,
)?;
let sensor_expander_device = I2cDevice::new(I2C_DRIVER.get().await);
let mut sensor_expander = Pca9535Immediate::new(sensor_expander_device, 34);
let sensor = match sensor_expander.pin_into_output(GPIOBank::Bank0, 0) {
Ok(_) => {
log::info!("SensorExpander answered");
let signal_counter = peripherals.pcnt0;
signal_counter.set_high_limit(Some(i16::MAX))?;
let ch0 = &signal_counter.channel0;
let edge_pin = Input::new(peripherals.gpio22, InputConfig::default());
ch0.set_edge_signal(edge_pin.peripheral_input());
ch0.set_input_mode(Hold, Increment);
ch0.set_ctrl_mode(Keep, Keep);
signal_counter.listen();
for pin in 0..8 {
let _ = sensor_expander.pin_into_output(GPIOBank::Bank0, pin);
let _ = sensor_expander.pin_into_output(GPIOBank::Bank1, pin);
let _ = sensor_expander.pin_set_low(GPIOBank::Bank0, pin);
let _ = sensor_expander.pin_set_low(GPIOBank::Bank1, pin);
}
SensorImpl::PulseCounter {
signal_counter,
sensor_expander,
}
}
Err(_) => {
log::info!("Can bus mode ");
let twai_config = Some(twai::TwaiConfiguration::new(
peripherals.twai,
peripherals.gpio2,
peripherals.gpio0,
TWAI_BAUDRATE,
TwaiMode::Normal,
));
let can_power = Output::new(peripherals.gpio22, Level::Low, OutputConfig::default());
//can bus version
SensorImpl::CanBus {
twai_config,
can_power,
}
}
};
let solar_is_day = Input::new(peripherals.gpio7, InputConfig::default());
let light = Output::new(peripherals.gpio10, Level::Low, Default::default());
let charge_indicator = Output::new(peripherals.gpio3, Level::Low, Default::default());
let pump_device = I2cDevice::new(I2C_DRIVER.get().await);
let mut pump_expander = Pca9535Immediate::new(pump_device, 32);
for pin in 0..8 {
let _ = pump_expander.pin_into_output(GPIOBank::Bank0, pin);
let _ = pump_expander.pin_into_output(GPIOBank::Bank1, pin);
let _ = pump_expander.pin_set_low(GPIOBank::Bank0, pin);
let _ = pump_expander.pin_set_low(GPIOBank::Bank1, pin);
}
let mppt_current = I2cDevice::new(I2C_DRIVER.get().await);
let mppt_ina = match SyncIna219::new(mppt_current, Address::from_pins(Pin::Vcc, Pin::Gnd)) {
Ok(mut ina) => {
// Prefer higher averaging for more stable readings
let _ = ina.set_configuration(Configuration {
reset: Default::default(),
bus_voltage_range: Default::default(),
shunt_voltage_range: Default::default(),
bus_resolution: Default::default(),
shunt_resolution: Resolution::Avg128,
operating_mode: Default::default(),
});
Some(ina)
}
Err(err) => {
log::info!("Error creating mppt ina: {:?}", err);
None
}
};
let pump_current_dev = I2cDevice::new(I2C_DRIVER.get().await);
let pump_ina = match SyncIna219::new(pump_current_dev, Address::from_pins(Pin::Gnd, Pin::Sda)) {
Ok(ina) => Some(ina),
Err(err) => {
log::info!("Error creating pump ina: {:?}", err);
None
}
};
let charger = match mppt_ina {
Some(mut mppt_ina) => {
mppt_ina.set_configuration(Configuration {
reset: Default::default(),
bus_voltage_range: Default::default(),
shunt_voltage_range: Default::default(),
bus_resolution: Default::default(),
shunt_resolution: ina219::configuration::Resolution::Avg128,
operating_mode: Default::default(),
})?;
Charger::SolarMpptV1 {
mppt_ina,
solar_is_day,
charge_indicator,
}
}
None => Charger::ErrorInit {},
};
let v = V4 {
rtc_module,
esp,
awake,
tank_sensor,
light,
general_fault,
pump_expander,
config,
battery_monitor,
pump_ina,
charger,
extra1,
extra2,
sensor,
};
Ok(Box::new(v))
}
#[async_trait(?Send)]
impl<'a> BoardInteraction<'a> for V4<'a> {
fn get_tank_sensor(&mut self) -> Result<&mut TankSensor<'a>, FatError> {
Ok(&mut self.tank_sensor)
}
fn get_esp(&mut self) -> &mut Esp<'a> {
&mut self.esp
}
fn get_config(&mut self) -> &PlantControllerConfig {
&self.config
}
fn get_battery_monitor(&mut self) -> &mut Box<dyn BatteryInteraction + Send> {
&mut self.battery_monitor
}
fn get_rtc_module(&mut self) -> &mut Box<dyn RTCModuleInteraction + Send> {
&mut self.rtc_module
}
async fn set_charge_indicator(&mut self, charging: bool) -> Result<(), FatError> {
self.charger.set_charge_indicator(charging)
}
async fn deep_sleep(&mut self, duration_in_ms: u64) -> ! {
self.awake.set_low();
self.charger.power_save();
let rtc = TIME_ACCESS.get().await.lock().await;
self.esp.deep_sleep(duration_in_ms, rtc);
}
fn is_day(&self) -> bool {
self.charger.is_day()
}
async fn light(&mut self, enable: bool) -> Result<(), FatError> {
hold_disable(10);
self.light.set_level(enable.into());
hold_enable(10);
Ok(())
}
async fn pump(&mut self, plant: usize, enable: bool) -> FatResult<()> {
if enable {
self.pump_expander
.pin_set_high(GPIOBank::Bank0, plant as u8)?;
} else {
self.pump_expander
.pin_set_low(GPIOBank::Bank0, plant as u8)?;
}
Ok(())
}
async fn pump_current(&mut self, _plant: usize) -> Result<Current, FatError> {
// sensor is shared for all pumps, ignore plant id
match self.pump_ina.as_mut() {
None => {
bail!("pump current sensor not available");
}
Some(pump_ina) => {
let v = pump_ina
.shunt_voltage()
.map_err(|e| FatError::String {
error: alloc::format!("{:?}", e),
})
.map(|v| {
let shunt_voltage =
Voltage::from_microvolts(v.shunt_voltage_uv().abs() as f64);
let shut_value = Resistance::from_ohms(0.05_f64);
let current = shunt_voltage.as_volts() / shut_value.as_ohms();
Current::from_amperes(current)
})?;
Ok(v)
}
}
}
async fn fault(&mut self, plant: usize, enable: bool) -> FatResult<()> {
if enable {
self.pump_expander
.pin_set_high(GPIOBank::Bank1, plant as u8)?;
} else {
self.pump_expander
.pin_set_low(GPIOBank::Bank1, plant as u8)?;
}
Ok(())
}
async fn measure_moisture_hz(&mut self, plant: usize, sensor: Sensor) -> Result<f32, FatError> {
self.sensor.measure_moisture_hz(plant, sensor).await
}
async fn general_fault(&mut self, enable: bool) {
hold_disable(23);
self.general_fault.set_level(enable.into());
hold_enable(23);
}
async fn test(&mut self) -> Result<(), FatError> {
self.general_fault(true).await;
Timer::after_millis(100).await;
self.general_fault(false).await;
Timer::after_millis(500).await;
self.extra1.set_high();
Timer::after_millis(500).await;
self.extra1.set_low();
Timer::after_millis(500).await;
self.extra2.set_high();
Timer::after_millis(500).await;
self.extra2.set_low();
Timer::after_millis(500).await;
self.light(true).await?;
Timer::after_millis(500).await;
self.light(false).await?;
Timer::after_millis(500).await;
for i in 0..PLANT_COUNT {
self.fault(i, true).await?;
Timer::after_millis(500).await;
self.fault(i, false).await?;
Timer::after_millis(500).await;
}
for i in 0..PLANT_COUNT {
self.pump(i, true).await?;
Timer::after_millis(100).await;
self.pump(i, false).await?;
Timer::after_millis(100).await;
}
for plant in 0..PLANT_COUNT {
let a = self.measure_moisture_hz(plant, Sensor::A).await;
let b = self.measure_moisture_hz(plant, Sensor::B).await;
let aa = match a {
Ok(a) => a as u32,
Err(_) => u32::MAX,
};
let bb = match b {
Ok(b) => b as u32,
Err(_) => u32::MAX,
};
LOG_ACCESS
.lock()
.await
.log(LogMessage::TestSensor, aa, bb, &plant.to_string(), "")
.await;
}
Timer::after_millis(10).await;
Ok(())
}
fn set_config(&mut self, config: PlantControllerConfig) {
self.config = config;
}
async fn get_mptt_voltage(&mut self) -> Result<Voltage, FatError> {
self.charger.get_mptt_voltage()
}
async fn get_mptt_current(&mut self) -> Result<Current, FatError> {
self.charger.get_mppt_current()
}
async fn detect_sensors(&mut self) -> Result<alloc::string::String, FatError> {
// Delegate to sensor autodetect and build JSON
let detected = self.sensor.autodetect().await?;
// Build JSON manually to avoid exposing internal types
let mut s = alloc::string::String::from("{\"plants\":[");
for (i, (a, b)) in detected.iter().enumerate() {
if i != 0 {
s.push(',');
}
s.push_str("{\"a\":");
s.push_str(if *a { "true" } else { "false" });
s.push_str(",\"b\":");
s.push_str(if *b { "true" } else { "false" });
s.push('}');
}
s.push_str("]}");
Ok(s)
}
}