PlantCtrl/rust/src/hal/v4_hal.rs

485 lines
16 KiB
Rust

use crate::config::PlantControllerConfig;
use crate::hal::battery::BatteryInteraction;
use crate::hal::esp::Esp;
use crate::hal::rtc::RTCModuleInteraction;
use crate::hal::water::TankSensor;
use crate::hal::{
deep_sleep, BoardInteraction, FreePeripherals, Sensor, I2C_DRIVER, PLANT_COUNT,
REPEAT_MOIST_MEASURE,
};
use crate::log::{log, LogMessage};
use anyhow::bail;
use embedded_hal::digital::OutputPin;
use embedded_hal_bus::i2c::MutexDevice;
use esp_idf_hal::delay::Delay;
use esp_idf_hal::gpio::{AnyInputPin, IOPin, InputOutput, Output, PinDriver, Pull};
use esp_idf_hal::i2c::I2cDriver;
use esp_idf_hal::pcnt::{
PcntChannel, PcntChannelConfig, PcntControlMode, PcntCountMode, PcntDriver, PinIndex,
};
use esp_idf_sys::{gpio_hold_dis, gpio_hold_en};
use ina219::address::{Address, Pin};
use ina219::calibration::UnCalibrated;
use ina219::configuration::{Configuration, OperatingMode};
use ina219::SyncIna219;
use measurements::{Current, Resistance, Voltage};
use pca9535::{GPIOBank, Pca9535Immediate, StandardExpanderInterface};
use std::result::Result::Ok as OkStd;
const MS0: u8 = 1_u8;
const MS1: u8 = 0_u8;
const MS2: u8 = 3_u8;
const MS3: u8 = 4_u8;
const MS4: u8 = 2_u8;
const SENSOR_ON: u8 = 5_u8;
pub enum Charger<'a> {
SolarMpptV1 {
mppt_ina: SyncIna219<MutexDevice<'a, I2cDriver<'a>>, UnCalibrated>,
solar_is_day: PinDriver<'a, esp_idf_hal::gpio::AnyIOPin, esp_idf_hal::gpio::Input>,
charge_indicator: PinDriver<'a, esp_idf_hal::gpio::AnyIOPin, InputOutput>,
},
ErrorInit {},
}
impl Charger<'_> {
pub(crate) fn power_save(&mut self) {
match self {
Charger::SolarMpptV1 { mppt_ina, .. } => {
let _ = mppt_ina
.set_configuration(Configuration {
reset: Default::default(),
bus_voltage_range: Default::default(),
shunt_voltage_range: Default::default(),
bus_resolution: Default::default(),
shunt_resolution: Default::default(),
operating_mode: OperatingMode::PowerDown,
})
.map_err(|e| {
println!(
"Error setting ina mppt configuration during deep sleep preparation{:?}",
e
);
});
}
_ => {}
}
}
fn set_charge_indicator(&mut self, charging: bool) -> anyhow::Result<()> {
match self {
Self::SolarMpptV1 {
charge_indicator, ..
} => {
charge_indicator.set_state(charging.into())?;
}
_ => {}
}
Ok(())
}
fn is_day(&self) -> bool {
match self {
Charger::SolarMpptV1 { solar_is_day, .. } => solar_is_day.get_level().into(),
_ => true,
}
}
fn get_mptt_voltage(&mut self) -> anyhow::Result<Voltage> {
let voltage = match self {
Charger::SolarMpptV1 { mppt_ina, .. } => mppt_ina
.bus_voltage()
.map(|v| Voltage::from_millivolts(v.voltage_mv() as f64))?,
_ => {
bail!("hardware error during init")
}
};
Ok(voltage)
}
fn get_mptt_current(&mut self) -> anyhow::Result<Current> {
let current = match self {
Charger::SolarMpptV1 { mppt_ina, .. } => mppt_ina.shunt_voltage().map(|v| {
let shunt_voltage = Voltage::from_microvolts(v.shunt_voltage_uv().abs() as f64);
let shut_value = Resistance::from_ohms(0.05_f64);
let current = shunt_voltage.as_volts() / shut_value.as_ohms();
Current::from_amperes(current)
})?,
_ => {
bail!("hardware error during init")
}
};
Ok(current)
}
}
pub struct V4<'a> {
esp: Esp<'a>,
tank_sensor: TankSensor<'a>,
charger: Charger<'a>,
rtc_module: Box<dyn RTCModuleInteraction + Send>,
battery_monitor: Box<dyn BatteryInteraction + Send>,
config: PlantControllerConfig,
signal_counter: PcntDriver<'a>,
awake: PinDriver<'a, esp_idf_hal::gpio::AnyIOPin, Output>,
light: PinDriver<'a, esp_idf_hal::gpio::AnyIOPin, InputOutput>,
general_fault: PinDriver<'a, esp_idf_hal::gpio::AnyIOPin, InputOutput>,
pump_expander: Pca9535Immediate<MutexDevice<'a, I2cDriver<'a>>>,
pump_ina: Option<SyncIna219<MutexDevice<'a, I2cDriver<'a>>, UnCalibrated>>,
sensor_expander: Pca9535Immediate<MutexDevice<'a, I2cDriver<'a>>>,
extra1: PinDriver<'a, esp_idf_hal::gpio::AnyIOPin, Output>,
extra2: PinDriver<'a, esp_idf_hal::gpio::AnyIOPin, Output>,
}
pub(crate) fn create_v4(
peripherals: FreePeripherals,
esp: Esp<'static>,
config: PlantControllerConfig,
battery_monitor: Box<dyn BatteryInteraction + Send>,
rtc_module: Box<dyn RTCModuleInteraction + Send>,
) -> anyhow::Result<Box<dyn BoardInteraction<'static> + Send + 'static>> {
let mut awake = PinDriver::output(peripherals.gpio21.downgrade())?;
awake.set_high()?;
let mut general_fault = PinDriver::input_output(peripherals.gpio23.downgrade())?;
general_fault.set_pull(Pull::Floating)?;
general_fault.set_low()?;
let mut extra1 = PinDriver::output(peripherals.gpio6.downgrade())?;
extra1.set_low()?;
let mut extra2 = PinDriver::output(peripherals.gpio15.downgrade())?;
extra2.set_low()?;
let one_wire_pin = peripherals.gpio18.downgrade();
let tank_power_pin = peripherals.gpio11.downgrade();
let flow_sensor_pin = peripherals.gpio4.downgrade();
let tank_sensor = TankSensor::create(
one_wire_pin,
peripherals.adc1,
peripherals.gpio5,
tank_power_pin,
flow_sensor_pin,
peripherals.pcnt1
)?;
let mut signal_counter = PcntDriver::new(
peripherals.pcnt0,
Some(peripherals.gpio22),
Option::<AnyInputPin>::None,
Option::<AnyInputPin>::None,
Option::<AnyInputPin>::None,
)?;
signal_counter.channel_config(
PcntChannel::Channel0,
PinIndex::Pin0,
PinIndex::Pin1,
&PcntChannelConfig {
lctrl_mode: PcntControlMode::Keep,
hctrl_mode: PcntControlMode::Keep,
pos_mode: PcntCountMode::Increment,
neg_mode: PcntCountMode::Hold,
counter_h_lim: i16::MAX,
counter_l_lim: 0,
},
)?;
let mut solar_is_day = PinDriver::input(peripherals.gpio7.downgrade())?;
solar_is_day.set_pull(Pull::Floating)?;
let mut light = PinDriver::input_output(peripherals.gpio10.downgrade())?;
light.set_pull(Pull::Floating)?;
let mut charge_indicator = PinDriver::input_output(peripherals.gpio3.downgrade())?;
charge_indicator.set_pull(Pull::Floating)?;
charge_indicator.set_low()?;
let mut pump_expander = Pca9535Immediate::new(MutexDevice::new(&I2C_DRIVER), 32);
for pin in 0..8 {
let _ = pump_expander.pin_into_output(GPIOBank::Bank0, pin);
let _ = pump_expander.pin_into_output(GPIOBank::Bank1, pin);
let _ = pump_expander.pin_set_low(GPIOBank::Bank0, pin);
let _ = pump_expander.pin_set_low(GPIOBank::Bank1, pin);
}
let mut sensor_expander = Pca9535Immediate::new(MutexDevice::new(&I2C_DRIVER), 34);
for pin in 0..8 {
let _ = sensor_expander.pin_into_output(GPIOBank::Bank0, pin);
let _ = sensor_expander.pin_into_output(GPIOBank::Bank1, pin);
let _ = sensor_expander.pin_set_low(GPIOBank::Bank0, pin);
let _ = sensor_expander.pin_set_low(GPIOBank::Bank1, pin);
}
let mppt_ina = SyncIna219::new(
MutexDevice::new(&I2C_DRIVER),
Address::from_pins(Pin::Vcc, Pin::Gnd),
);
let charger = match mppt_ina {
Ok(mut mppt_ina) => {
mppt_ina.set_configuration(Configuration {
reset: Default::default(),
bus_voltage_range: Default::default(),
shunt_voltage_range: Default::default(),
bus_resolution: Default::default(),
shunt_resolution: ina219::configuration::Resolution::Avg128,
operating_mode: Default::default(),
})?;
Charger::SolarMpptV1 {
mppt_ina,
solar_is_day,
charge_indicator,
}
}
Err(_) => Charger::ErrorInit {},
};
let pump_ina = match SyncIna219::new(
MutexDevice::new(&I2C_DRIVER),
Address::from_pins(Pin::Gnd, Pin::Sda),
) {
Ok(pump_ina) => Some(pump_ina),
Err(err) => {
println!("Error creating pump ina: {:?}", err);
None
}
};
let v = V4 {
rtc_module,
esp,
awake,
tank_sensor,
signal_counter,
light,
general_fault,
pump_ina,
pump_expander,
sensor_expander,
config,
battery_monitor,
charger,
extra1,
extra2,
};
Ok(Box::new(v))
}
impl<'a> BoardInteraction<'a> for V4<'a> {
fn get_tank_sensor(&mut self) -> Option<&mut TankSensor<'a>> {
Some(&mut self.tank_sensor)
}
fn get_esp(&mut self) -> &mut Esp<'a> {
&mut self.esp
}
fn get_config(&mut self) -> &PlantControllerConfig {
&self.config
}
fn get_battery_monitor(&mut self) -> &mut Box<dyn BatteryInteraction + Send> {
&mut self.battery_monitor
}
fn get_rtc_module(&mut self) -> &mut Box<dyn RTCModuleInteraction + Send> {
&mut self.rtc_module
}
fn set_charge_indicator(&mut self, charging: bool) -> anyhow::Result<()> {
self.charger.set_charge_indicator(charging)
}
fn deep_sleep(&mut self, duration_in_ms: u64) -> ! {
self.awake.set_low().unwrap();
self.charger.power_save();
deep_sleep(duration_in_ms);
}
fn is_day(&self) -> bool {
self.charger.is_day()
}
fn light(&mut self, enable: bool) -> anyhow::Result<()> {
unsafe { gpio_hold_dis(self.light.pin()) };
self.light.set_state(enable.into())?;
unsafe { gpio_hold_en(self.light.pin()) };
anyhow::Ok(())
}
fn pump(&mut self, plant: usize, enable: bool) -> anyhow::Result<()> {
if enable {
self.pump_expander
.pin_set_high(GPIOBank::Bank0, plant.try_into()?)?;
} else {
self.pump_expander
.pin_set_low(GPIOBank::Bank0, plant.try_into()?)?;
}
anyhow::Ok(())
}
fn pump_current(&mut self, _plant: usize) -> anyhow::Result<Current> {
//sensore is shared for all pumps, ignore plant id
match self.pump_ina.as_mut() {
None => {
bail!("pump current sensor not available");
}
Some(pump_ina) => {
let v = pump_ina.shunt_voltage().map(|v| {
let shunt_voltage = Voltage::from_microvolts(v.shunt_voltage_uv().abs() as f64);
let shut_value = Resistance::from_ohms(0.05_f64);
let current = shunt_voltage.as_volts() / shut_value.as_ohms();
Current::from_amperes(current)
})?;
Ok(v)
}
}
}
fn fault(&mut self, plant: usize, enable: bool) -> anyhow::Result<()> {
if enable {
self.pump_expander
.pin_set_high(GPIOBank::Bank1, plant.try_into()?)?
} else {
self.pump_expander
.pin_set_low(GPIOBank::Bank1, plant.try_into()?)?
}
anyhow::Ok(())
}
fn measure_moisture_hz(&mut self, plant: usize, sensor: Sensor) -> anyhow::Result<f32> {
let mut results = [0_f32; REPEAT_MOIST_MEASURE];
for repeat in 0..REPEAT_MOIST_MEASURE {
self.signal_counter.counter_pause()?;
self.signal_counter.counter_clear()?;
//Disable all
self.sensor_expander.pin_set_high(GPIOBank::Bank0, MS4)?;
let sensor_channel = match sensor {
Sensor::A => plant as u32,
Sensor::B => (15 - plant) as u32,
};
let is_bit_set = |b: u8| -> bool { sensor_channel & (1 << b) != 0 };
if is_bit_set(0) {
self.sensor_expander.pin_set_high(GPIOBank::Bank0, MS0)?;
} else {
self.sensor_expander.pin_set_low(GPIOBank::Bank0, MS0)?;
}
if is_bit_set(1) {
self.sensor_expander.pin_set_high(GPIOBank::Bank0, MS1)?;
} else {
self.sensor_expander.pin_set_low(GPIOBank::Bank0, MS1)?;
}
if is_bit_set(2) {
self.sensor_expander.pin_set_high(GPIOBank::Bank0, MS2)?;
} else {
self.sensor_expander.pin_set_low(GPIOBank::Bank0, MS2)?;
}
if is_bit_set(3) {
self.sensor_expander.pin_set_high(GPIOBank::Bank0, MS3)?;
} else {
self.sensor_expander.pin_set_low(GPIOBank::Bank0, MS3)?;
}
self.sensor_expander.pin_set_low(GPIOBank::Bank0, MS4)?;
self.sensor_expander
.pin_set_high(GPIOBank::Bank0, SENSOR_ON)?;
let delay = Delay::new_default();
let measurement = 100; // TODO what is this scaling factor? what is its purpose?
let factor = 1000f32 / measurement as f32;
//give some time to stabilize
delay.delay_ms(10);
self.signal_counter.counter_resume()?;
delay.delay_ms(measurement);
self.signal_counter.counter_pause()?;
self.sensor_expander.pin_set_high(GPIOBank::Bank0, MS4)?;
self.sensor_expander
.pin_set_low(GPIOBank::Bank0, SENSOR_ON)?;
self.sensor_expander.pin_set_low(GPIOBank::Bank0, MS0)?;
self.sensor_expander.pin_set_low(GPIOBank::Bank0, MS1)?;
self.sensor_expander.pin_set_low(GPIOBank::Bank0, MS2)?;
self.sensor_expander.pin_set_low(GPIOBank::Bank0, MS3)?;
delay.delay_ms(10);
let unscaled = self.signal_counter.get_counter_value()? as i32;
let hz = unscaled as f32 * factor;
log(
LogMessage::RawMeasure,
unscaled as u32,
hz as u32,
&plant.to_string(),
&format!("{sensor:?}"),
);
results[repeat] = hz;
}
results.sort_by(|a, b| a.partial_cmp(b).unwrap()); // floats don't seem to implement total_ord
let mid = results.len() / 2;
let median = results[mid];
anyhow::Ok(median)
}
fn general_fault(&mut self, enable: bool) {
unsafe { gpio_hold_dis(self.general_fault.pin()) };
self.general_fault.set_state(enable.into()).unwrap();
unsafe { gpio_hold_en(self.general_fault.pin()) };
}
fn test(&mut self) -> anyhow::Result<()> {
self.general_fault(true);
self.esp.delay.delay_ms(100);
self.general_fault(false);
self.esp.delay.delay_ms(500);
self.light(true)?;
self.esp.delay.delay_ms(500);
self.light(false)?;
self.esp.delay.delay_ms(500);
for i in 0..PLANT_COUNT {
self.fault(i, true)?;
self.esp.delay.delay_ms(500);
self.fault(i, false)?;
self.esp.delay.delay_ms(500);
}
for i in 0..PLANT_COUNT {
self.pump(i, true)?;
self.esp.delay.delay_ms(100);
self.pump(i, false)?;
self.esp.delay.delay_ms(100);
}
for plant in 0..PLANT_COUNT {
let a = self.measure_moisture_hz(plant, Sensor::A);
let b = self.measure_moisture_hz(plant, Sensor::B);
let aa = match a {
OkStd(a) => a as u32,
Err(_) => u32::MAX,
};
let bb = match b {
OkStd(b) => b as u32,
Err(_) => u32::MAX,
};
log(LogMessage::TestSensor, aa, bb, &plant.to_string(), "");
}
self.esp.delay.delay_ms(10);
anyhow::Ok(())
}
fn set_config(&mut self, config: PlantControllerConfig) -> anyhow::Result<()> {
self.config = config;
self.esp.save_config(&self.config)?;
anyhow::Ok(())
}
fn get_mptt_voltage(&mut self) -> anyhow::Result<Voltage> {
self.charger.get_mptt_voltage()
}
fn get_mptt_current(&mut self) -> anyhow::Result<Current> {
self.charger.get_mptt_current()
}
}