PlantCtrl/rust/src/plant_hal.rs
2023-11-29 18:27:55 +01:00

449 lines
17 KiB
Rust

mod config;
use embedded_svc::wifi::{Configuration, ClientConfiguration, AuthMethod};
use esp_idf_svc::eventloop::EspSystemEventLoop;
use esp_idf_svc::nvs::EspDefaultNvsPartition;
use esp_idf_svc::wifi::EspWifi;
use std::sync::Mutex;
use anyhow::{Context, Result, bail};
use anyhow::anyhow;
use chrono::{Utc, NaiveDateTime, DateTime};
use ds18b20::Ds18b20;
use embedded_hal::digital::v1_compat::OldOutputPin;
use embedded_hal::digital::v2::OutputPin;
use esp_idf_hal::adc::config::Config;
use esp_idf_hal::adc::{AdcDriver, AdcChannelDriver, attenuation};
use esp_idf_hal::delay::{Delay, FreeRtos};
use esp_idf_hal::pcnt::{PcntDriver, PcntChannel, PinIndex, PcntChannelConfig, PcntControlMode, PcntCountMode};
use esp_idf_hal::reset::ResetReason;
use esp_idf_svc::sntp::{self, SyncStatus};
use esp_idf_svc::systime::EspSystemTime;
use esp_idf_sys::EspError;
use one_wire_bus::OneWire;
use shift_register_driver::sipo::ShiftRegister40;
use esp_idf_hal::gpio::{PinDriver, Gpio39, Gpio4, AnyInputPin};
use esp_idf_hal::prelude::Peripherals;
pub const PLANT_COUNT:usize = 8;
const PINS_PER_PLANT:usize = 5;
const PLANT_PUMP_OFFSET:usize = 0;
const PLANT_FAULT_OFFSET:usize = 1;
const PLANT_MOIST_PUMP_OFFSET:usize = 2;
const PLANT_MOIST_B_OFFSET:usize = 3;
const PLANT_MOIST_A_OFFSET:usize = 4;
#[link_section = ".rtc.data"]
static mut LAST_WATERING_TIMESTAMP: [i64; PLANT_COUNT] = [0; PLANT_COUNT];
#[link_section = ".rtc.data"]
static mut CONSECUTIVE_WATERING_PLANT: [u32; PLANT_COUNT] = [0; PLANT_COUNT];
#[link_section = ".rtc.data"]
static mut LOW_VOLTAGE_DETECTED:bool = false;
pub struct BatteryState {
state_charge_percent: u8,
max_error_percent: u8,
remaining_milli_ampere_hour: u32,
max_milli_ampere_hour: u32,
design_milli_ampere_hour:u32,
voltage_milli_volt: u16,
average_current_milli_ampere: u16,
temperature_tenth_kelvin: u32,
average_time_to_empty_minute: u16,
average_time_to_full_minute: u16,
average_discharge_power_cycle_milli_watt: u16,
cycle_count: u16,
state_health_percent: u8
}
#[derive(Debug)]
pub enum Sensor{
A,
B,
PUMP
}
pub trait PlantCtrlBoardInteraction{
fn time(&mut self) -> Result<chrono::DateTime<Utc>>;
fn wifi(&mut self, ssid:&str, password:Option<&str>, max_wait:u32) -> Result<()>;
fn sntp(&mut self, max_wait:u32) -> Result<chrono::DateTime<Utc>>;
fn battery_state(&mut self) -> Result<BatteryState>;
fn general_fault(&mut self, enable: bool);
fn is_day(&self,) -> bool;
fn water_temperature_c(&mut self,) -> Result<f32>;
fn tank_sensor_mv(&mut self,) -> Result<u16>;
fn set_low_voltage_in_cycle(&mut self,);
fn clear_low_voltage_in_cycle(&mut self,);
fn low_voltage_in_cycle(&mut self) -> bool;
fn any_pump(&mut self, enabled:bool) -> Result<()>;
//keep state during deepsleep
fn light(&mut self,enable:bool) -> Result<()>;
fn measure_moisture_hz(&self, plant:usize, sensor:Sensor) -> Result<i32>;
fn pump(&self,plant:usize, enable:bool) -> Result<()>;
fn last_pump_time(&self,plant:usize) -> Result<chrono::DateTime<Utc>>;
fn store_last_pump_time(&mut self,plant:usize, time: chrono::DateTime<Utc>);
fn store_consecutive_pump_count(&mut self,plant:usize, count:u32);
fn consecutive_pump_count(&mut self,plant:usize) -> u32;
//keep state during deepsleep
fn fault(&self,plant:usize, enable:bool);
fn get_config(&mut self) -> Result<Config>;
}
pub trait CreatePlantHal<'a> {
fn create()-> Result<PlantCtrlBoard<'static>>;
}
pub struct PlantHal {
}
impl CreatePlantHal<'_> for PlantHal{
fn create() -> Result<PlantCtrlBoard<'static>> {
let peripherals = Peripherals::take()?;
let clock = OldOutputPin::from(PinDriver::output(peripherals.pins.gpio21)?);
let latch = OldOutputPin::from(PinDriver::output(peripherals.pins.gpio22)?);
let data = OldOutputPin::from(PinDriver::output(peripherals.pins.gpio19)?);
let one_wire_pin = PinDriver::input_output_od(peripherals.pins.gpio4)?;
//TODO make to none if not possible to init
//init,reset rtc memory depending on cause
let reasons = ResetReason::get();
let reset_store = match reasons {
ResetReason::Software => false,
ResetReason::ExternalPin => false,
ResetReason::Watchdog => true,
ResetReason::Sdio => true,
ResetReason::Panic => true,
ResetReason::InterruptWatchdog => true,
ResetReason::PowerOn => true,
ResetReason::Unknown => true,
ResetReason::Brownout => true,
ResetReason::TaskWatchdog => true,
ResetReason::DeepSleep => false,
};
if reset_store {
println!("Clear and reinit RTC store");
unsafe {
LAST_WATERING_TIMESTAMP = [0; PLANT_COUNT];
CONSECUTIVE_WATERING_PLANT = [0; PLANT_COUNT];
LOW_VOLTAGE_DETECTED = false;
};
} else {
println!("Keeping RTC store");
}
let mut counter_unit1 = PcntDriver::new(
peripherals.pcnt0,
Some(peripherals.pins.gpio18),
Option::<AnyInputPin>::None,
Option::<AnyInputPin>::None,
Option::<AnyInputPin>::None,
)?;
println!("Channel config start");
counter_unit1.channel_config(
PcntChannel::Channel0,
PinIndex::Pin0,
PinIndex::Pin1,
&PcntChannelConfig {
lctrl_mode: PcntControlMode::Reverse,
hctrl_mode: PcntControlMode::Keep,
pos_mode: PcntCountMode::Decrement,
neg_mode: PcntCountMode::Increment,
counter_h_lim: i16::MAX,
counter_l_lim: 0,
},
)?;
println!("Setup filter");
//TODO validate filter value! currently max allowed value
counter_unit1.set_filter_value(1023)?;
counter_unit1.filter_enable()?;
println!("Wifi start");
let sys_loop = EspSystemEventLoop::take()?;
let nvs = EspDefaultNvsPartition::take()?;
let wifi_driver = EspWifi::new(
peripherals.modem,
sys_loop,
Some(nvs)
)?;
let shift_register = ShiftRegister40::new(clock, latch, data);
let last_watering_timestamp = Mutex::new(unsafe { LAST_WATERING_TIMESTAMP });
let consecutive_watering_plant = Mutex::new(unsafe { CONSECUTIVE_WATERING_PLANT });
let low_voltage_detected = Mutex::new(unsafe { LOW_VOLTAGE_DETECTED });
let tank_driver = AdcDriver::new(peripherals.adc1, &Config::new())?;
let tank_channel: AdcChannelDriver<'_, {attenuation::DB_11}, Gpio39> = AdcChannelDriver::new(peripherals.pins.gpio39)?;
let solar_is_day = PinDriver::input(peripherals.pins.gpio25)?;
let light = PinDriver::output(peripherals.pins.gpio26)?;
let main_pump = PinDriver::output(peripherals.pins.gpio23)?;
let tank_power = PinDriver::output(peripherals.pins.gpio27)?;
let general_fault = PinDriver::output(peripherals.pins.gpio13)?;
let one_wire_bus = OneWire::new(one_wire_pin).map_err(|err| -> anyhow::Error {anyhow!("Missing attribute: {:?}", err)})?;
println!("After stuff");
return Ok(PlantCtrlBoard {
shift_register : shift_register,
last_watering_timestamp : last_watering_timestamp,
consecutive_watering_plant : consecutive_watering_plant,
low_voltage_detected : low_voltage_detected,
tank_driver : tank_driver,
tank_channel: tank_channel,
solar_is_day : solar_is_day,
light: light,
main_pump: main_pump,
tank_power: tank_power,
general_fault: general_fault,
one_wire_bus: one_wire_bus,
signal_counter : counter_unit1,
wifi_driver : wifi_driver
});
}
}
pub struct PlantCtrlBoard<'a>{
shift_register: ShiftRegister40<OldOutputPin<PinDriver<'a, esp_idf_hal::gpio::Gpio21, esp_idf_hal::gpio::Output>>, OldOutputPin<PinDriver<'a, esp_idf_hal::gpio::Gpio22, esp_idf_hal::gpio::Output>>, OldOutputPin<PinDriver<'a, esp_idf_hal::gpio::Gpio19, esp_idf_hal::gpio::Output>>>,
consecutive_watering_plant: Mutex<[u32; PLANT_COUNT]>,
last_watering_timestamp: Mutex<[i64; PLANT_COUNT]>,
low_voltage_detected: Mutex<bool>,
tank_driver: AdcDriver<'a, esp_idf_hal::adc::ADC1>,
tank_channel: esp_idf_hal::adc::AdcChannelDriver<'a, { attenuation::DB_11 }, Gpio39 >,
solar_is_day: PinDriver<'a, esp_idf_hal::gpio::Gpio25, esp_idf_hal::gpio::Input>,
signal_counter: PcntDriver<'a>,
light: PinDriver<'a, esp_idf_hal::gpio::Gpio26, esp_idf_hal::gpio::Output>,
main_pump: PinDriver<'a, esp_idf_hal::gpio::Gpio23, esp_idf_hal::gpio::Output>,
tank_power: PinDriver<'a, esp_idf_hal::gpio::Gpio27, esp_idf_hal::gpio::Output>,
general_fault: PinDriver<'a, esp_idf_hal::gpio::Gpio13, esp_idf_hal::gpio::Output>,
pub wifi_driver: EspWifi<'a>,
one_wire_bus: OneWire<PinDriver<'a, Gpio4, esp_idf_hal::gpio::InputOutput>>,
}
impl PlantCtrlBoardInteraction for PlantCtrlBoard<'_> {
fn battery_state(&mut self,) -> Result<BatteryState> {
todo!()
}
fn is_day(&self,) -> bool {
return self.solar_is_day.get_level().into();
}
fn water_temperature_c(&mut self,) -> Result<f32> {
let mut delay = Delay::new_default();
self.one_wire_bus.reset(&mut delay).map_err(|err| -> anyhow::Error {anyhow!("Missing attribute: {:?}", err)})?;
let first = self.one_wire_bus.devices(false, &mut delay).next();
if first.is_none() {
bail!("Not found any one wire Ds18b20");
}
let device_address = first.unwrap().map_err(|err| -> anyhow::Error {anyhow!("Missing attribute: {:?}", err)})?;
let water_temp_sensor = Ds18b20::new::<EspError>(device_address).map_err(|err| -> anyhow::Error {anyhow!("Missing attribute: {:?}", err)})?;
water_temp_sensor.start_temp_measurement(&mut self.one_wire_bus, &mut delay).map_err(|err| -> anyhow::Error {anyhow!("Missing attribute: {:?}", err)})?;
ds18b20::Resolution::Bits12.delay_for_measurement_time(&mut delay);
let sensor_data = water_temp_sensor.read_data(&mut self.one_wire_bus, &mut delay).map_err(|err| -> anyhow::Error {anyhow!("Missing attribute: {:?}", err)})?;
if sensor_data.temperature == 85_f32 {
bail!("Ds18b20 dummy temperature returned");
}
return Ok(sensor_data.temperature);
}
fn tank_sensor_mv(&mut self,) -> Result<u16> {
let delay = Delay::new_default();
self.tank_power.set_high()?;
//let stabilize
delay.delay_ms(100);
let value = self.tank_driver.read(&mut self.tank_channel)?;
self.tank_power.set_low()?;
return Ok(value);
}
fn set_low_voltage_in_cycle(&mut self,) {
*self.low_voltage_detected.get_mut().unwrap() = true;
}
fn clear_low_voltage_in_cycle(&mut self,) {
*self.low_voltage_detected.get_mut().unwrap() = false;
}
fn light(&mut self,enable:bool) -> Result<()>{
self.light.set_state(enable.into())?;
Ok(())
}
fn pump(&self,plant:usize, enable:bool) -> Result<()> {
let index = plant*PINS_PER_PLANT+PLANT_PUMP_OFFSET;
//currently infailable error, keep for future as result anyway
self.shift_register.decompose()[index].set_state(enable.into()).unwrap();
Ok(())
}
fn last_pump_time(&self,plant:usize) -> Result<chrono::DateTime<Utc>> {
let ts = unsafe { LAST_WATERING_TIMESTAMP }[plant];
let timestamp = NaiveDateTime::from_timestamp_millis(ts).ok_or(anyhow!("could not convert timestamp"))?;
return Ok(DateTime::<Utc>::from_naive_utc_and_offset(timestamp, Utc));
}
fn store_last_pump_time(&mut self,plant:usize, time: chrono::DateTime<Utc>) {
self.last_watering_timestamp.get_mut().unwrap()[plant] = time.timestamp_millis();
}
fn store_consecutive_pump_count(&mut self,plant:usize, count:u32) {
self.consecutive_watering_plant.get_mut().unwrap()[plant] = count;
}
fn consecutive_pump_count(&mut self,plant:usize) -> u32 {
return self.consecutive_watering_plant.get_mut().unwrap()[plant]
}
fn fault(&self,plant:usize, enable:bool) {
let index = plant*PINS_PER_PLANT+PLANT_FAULT_OFFSET;
self.shift_register.decompose()[index].set_state(enable.into()).unwrap()
}
fn low_voltage_in_cycle(&mut self) -> bool {
return *self.low_voltage_detected.get_mut().unwrap()
}
fn any_pump(&mut self, enable:bool) -> Result<()> {
return Ok(self.main_pump.set_state(enable.into()).unwrap());
}
fn time(&mut self) -> Result<chrono::DateTime<Utc>> {
let time = EspSystemTime{}.now().as_millis();
let smaller_time = time as i64;
let local_time = NaiveDateTime::from_timestamp_millis(smaller_time).ok_or(anyhow!("could not convert timestamp"))?;
return Ok(local_time.and_utc());
}
fn sntp(&mut self, max_wait_ms:u32) -> Result<chrono::DateTime<Utc>> {
let sntp = sntp::EspSntp::new_default()?;
let mut counter = 0;
while sntp.get_sync_status() != SyncStatus::Completed{
let delay = Delay::new_default();
delay.delay_ms(100);
counter += 100;
if counter > max_wait_ms {
bail!("Reached sntp timeout, aborting")
}
}
return self.time();
}
fn measure_moisture_hz(&self, plant:usize, sensor:Sensor) -> Result<i32> {
self.signal_counter.counter_pause()?;
self.signal_counter.counter_clear()?;
//
let offset = match sensor {
Sensor::A => PLANT_MOIST_A_OFFSET,
Sensor::B => PLANT_MOIST_B_OFFSET,
Sensor::PUMP => PLANT_MOIST_PUMP_OFFSET,
};
let index = plant*PINS_PER_PLANT+offset;
let delay = Delay::new_default();
let measurement = 100;
let factor = 1000/100;
self.shift_register.decompose()[index].set_high().unwrap();
//give some time to stabilize
delay.delay_ms(10);
self.signal_counter.counter_resume()?;
delay.delay_ms(measurement);
self.signal_counter.counter_pause()?;
self.shift_register.decompose()[index].set_low().unwrap();
let unscaled = self.signal_counter.get_counter_value()? as i32;
let hz = unscaled*factor;
println!("Measuring {:?} @ {} with {}", sensor, plant, hz);
return Ok(hz);
}
fn general_fault(&mut self, enable:bool) {
self.general_fault.set_state(enable.into()).unwrap();
}
fn wifi(&mut self, ssid:&str, password:Option<&str>,max_wait:u32) -> Result<()> {
match password{
Some(pw) => {
//TODO expect error due to invalid pw or similar! //call this during configuration and check if works, revert to config mode if not
self.wifi_driver.set_configuration(&Configuration::Client(ClientConfiguration{
ssid: ssid.into(),
password: pw.into(),
..Default::default()
}))?;
},
None => {
self.wifi_driver.set_configuration(&Configuration::Client(ClientConfiguration {
ssid: ssid.into(),
auth_method: AuthMethod::None,
..Default::default()
})).unwrap();
},
}
self.wifi_driver.start().unwrap();
self.wifi_driver.connect().unwrap();
let delay = Delay::new_default();
let mut counter = 0_u32;
while !self.wifi_driver.is_connected().unwrap(){
let config = self.wifi_driver.get_configuration().unwrap();
println!("Waiting for station connection");
//TODO blink status?
delay.delay_ms(250);
counter += 250;
if counter > max_wait {
//ignore these errors, wifi will not be used this
self.wifi_driver.disconnect().unwrap_or(());
self.wifi_driver.stop().unwrap_or(());
bail!("Did not manage wifi connection within timeout");
}
}
println!("Should be connected now");
while self.wifi_driver.is_up().unwrap() == false {
println!("Waiting for network being up");
delay.delay_ms(250);
counter += 250;
if counter > max_wait {
//ignore these errors, wifi will not be used this
self.wifi_driver.disconnect().unwrap_or(());
self.wifi_driver.stop().unwrap_or(());
bail!("Did not manage wifi connection within timeout");
}
}
//update freertos registers ;)
let address = self.wifi_driver.sta_netif().get_ip_info().unwrap();
println!("IP info: {:?}", address);
return Ok(());
}
fn get_config(&mut self) -> Result<config::Config> {
todo!()
}
}