PlantCtrl/esp32/src/main.cpp
2020-09-07 18:18:46 +02:00

704 lines
23 KiB
C++

/**
* @file main.cpp
* @author Ollo
* @brief PlantControl
* @version 0.1
* @date 2020-05-01
*
* @copyright Copyright (c) 2020
*
*/
#include "PlantCtrl.h"
#include "ControllerConfiguration.h"
#include "DS18B20.h"
#include <Homie.h>
const unsigned long TEMPREADCYCLE = 30000; /**< Check temperature all half minutes */
#define AMOUNT_SENOR_QUERYS 8
#define SENSOR_QUERY_SHIFTS 3
#define SOLAR4SENSORS 6.0f
#define TEMP_INIT_VALUE -999.0f
#define TEMP_MAX_VALUE 85.0f
bool mLoopInited = false;
bool mDeepSleep = false;
bool mPumpIsRunning=false;
int plantSensor1 = 0;
int lipoSenor = -1;
int lipoSensorValues = 0;
int solarSensor = -1;
int solarSensorValues = 0;
int mWaterAtEmptyLevel = 0;
#ifndef HC_SR04
int mWaterLow = 0;
#else
int mWaterGone = -1; /**< Amount of centimeter, where no water is seen */
#endif
int mOverflow = 0;
int readCounter = 0;
int mButtonClicks = 0;
#if (MAX_PLANTS >= 1)
HomieNode plant1("plant1", "Plant 1", "Plant");
#endif
#if (MAX_PLANTS >= 2)
HomieNode plant2("plant2", "Plant 2", "Plant");
#endif
#if (MAX_PLANTS >= 3)
HomieNode plant3("plant3", "Plant 3", "Plant");
#endif
#if (MAX_PLANTS >= 4)
HomieNode plant4("plant4", "Plant 4", "Plant");
#endif
#if (MAX_PLANTS >= 5)
HomieNode plant5("plant5", "Plant 5", "Plant");
#endif
#if (MAX_PLANTS >= 6)
HomieNode plant6("plant6", "Plant 6", "Plant");
#endif
HomieNode sensorLipo("lipo", "Battery Status", "Lipo");
HomieNode sensorSolar("solar", "Solar Status", "Solarpanel");
HomieNode sensorWater("water", "WaterSensor", "Water");
HomieNode sensorTemp("temperature", "Temperature", "temperature");
HomieSetting<long> deepSleepTime("deepsleep", "time in milliseconds to sleep (0 deactivats it)");
HomieSetting<long> deepSleepNightTime("nightsleep", "time in milliseconds to sleep (0 usese same setting: deepsleep at night, too)");
HomieSetting<long> wateringTime("watering", "time seconds the pump is running (60 is the default)");
HomieSetting<long> plantCnt("plants", "amout of plants to control (1 ... 6)");
#ifdef HC_SR04
HomieSetting<long> waterLevel("watermaxlevel", "Water maximum level in centimeter (50 cm default)");
#endif
#if (MAX_PLANTS >= 1)
HomieSetting<long> plant1SensorTrigger("moist1", "Moist1 sensor value, when pump activates");
#endif
#if (MAX_PLANTS >= 2)
HomieSetting<long> plant2SensorTrigger("moist2", "Moist2 sensor value, when pump activates");
#endif
#if (MAX_PLANTS >= 3)
HomieSetting<long> plant3SensorTrigger("moist3", "Moist3 sensor value, when pump activates");
#endif
#if (MAX_PLANTS >= 4)
HomieSetting<long> plant4SensorTrigger("moist4", "Moist4 sensor value, when pump activates");
#endif
#if (MAX_PLANTS >= 5)
HomieSetting<long> plant5SensorTrigger("moist5", "Moist5 sensor value, when pump activates");
#endif
#if (MAX_PLANTS >= 6)
HomieSetting<long> plant6SensorTrigger("moist6", "Moist6 sensor value, when pump activates");
#endif
Ds18B20 dallas(SENSOR_DS18B20);
Plant mPlants[MAX_PLANTS] = {
#if (MAX_PLANTS >= 1)
Plant(SENSOR_PLANT1, OUTPUT_PUMP1),
#endif
#if (MAX_PLANTS >= 2)
Plant(SENSOR_PLANT2, OUTPUT_PUMP2),
#endif
#if (MAX_PLANTS >= 3)
Plant(SENSOR_PLANT3, OUTPUT_PUMP3),
#endif
#if (MAX_PLANTS >= 4)
Plant(SENSOR_PLANT4, OUTPUT_PUMP4),
#endif
#if (MAX_PLANTS >= 5)
Plant(SENSOR_PLANT5, OUTPUT_PUMP5),
#endif
#if (MAX_PLANTS >= 6)
Plant(SENSOR_PLANT6, OUTPUT_PUMP6)
#endif
};
void readAnalogValues() {
if (readCounter < AMOUNT_SENOR_QUERYS) {
lipoSensorValues += analogRead(SENSOR_LIPO);
solarSensorValues += analogRead(SENSOR_SOLAR);
readCounter++;
} else {
lipoSenor = (lipoSensorValues >> SENSOR_QUERY_SHIFTS);
lipoSensorValues = 0;
solarSensor = (solarSensorValues >> SENSOR_QUERY_SHIFTS);
solarSensorValues = 0;
readCounter = 0;
}
}
/**
* @brief cyclic Homie callback
* All logic, to be done by the controller cyclically
*/
void loopHandler() {
/* Move from Setup to this position, because the Settings are only here available */
if (!mLoopInited) {
// Configure Deep Sleep:
if (deepSleepTime.get()) {
Serial << "HOMIE | Setup sleeping for " << deepSleepTime.get() << " ms" << endl;
}
if (wateringTime.get()) {
Serial << "HOMIE | Setup watering for " << abs(wateringTime.get()) << " s" << endl;
}
/* Publish default values */
plant1.setProperty("switch").send(String("OFF"));
plant2.setProperty("switch").send(String("OFF"));
plant3.setProperty("switch").send(String("OFF"));
#if (MAX_PLANTS >= 4)
plant4.setProperty("switch").send(String("OFF"));
plant5.setProperty("switch").send(String("OFF"));
plant6.setProperty("switch").send(String("OFF"));
#endif
for(int i=0; i < plantCnt.get(); i++) {
mPlants[i].calculateSensorValue(AMOUNT_SENOR_QUERYS);
int boundary4MoistSensor=-1;
switch (i)
{
case 0:
boundary4MoistSensor = plant1SensorTrigger.get();
plant1.setProperty("moist").send(String(100 * mPlants[i].getSensorValue() / 4095 ));
break;
case 1:
boundary4MoistSensor = plant2SensorTrigger.get();
plant2.setProperty("moist").send(String(100 * mPlants[i].getSensorValue() / 4095));
break;
case 2:
boundary4MoistSensor = plant3SensorTrigger.get();
plant3.setProperty("moist").send(String(100 * mPlants[i].getSensorValue() / 4095));
break;
#if (MAX_PLANTS >= 4)
case 3:
boundary4MoistSensor = plant4SensorTrigger.get();
plant4.setProperty("moist").send(String(100 * mPlants[i].getSensorValue() / 4095));
break;
case 4:
boundary4MoistSensor = plant5SensorTrigger.get();
plant5.setProperty("moist").send(String(100 * mPlants[i].getSensorValue() / 4095));
break;
case 5:
boundary4MoistSensor = plant6SensorTrigger.get();
plant6.setProperty("moist").send(String(100 * mPlants[i].getSensorValue() / 4095));
break;
#endif
}
#ifndef HC_SR04
if (SOLAR_VOLT(solarSensor) > SOLAR4SENSORS) {
if (mWaterLow && mWaterAtEmptyLevel) {
sensorWater.setProperty("remaining").send("50");
} else if (!mWaterLow && mWaterAtEmptyLevel) {
sensorWater.setProperty("remaining").send("10");
} else if (!mWaterLow && !mWaterAtEmptyLevel) {
sensorWater.setProperty("remaining").send("0");
} else if (!mWaterLow && !mWaterAtEmptyLevel) {
sensorWater.setProperty("remaining").send("-1");
}
} else {
Serial << "Sun not strong enough for sensors (" << String(SOLAR_VOLT(solarSensor)) << "V )" << endl;
}
#else
mWaterAtEmptyLevel = (mWaterGone <= waterLevel.get());
int waterLevelPercent = (100 * mWaterGone) / waterLevel.get();
sensorWater.setProperty("remaining").send(String(waterLevelPercent));
Serial << "Water : " << mWaterGone << " cm (" << waterLevelPercent << "%)" << endl;
#endif
mPumpIsRunning=false;
/* Check if a plant needs water */
if (mPlants[i].isPumpRequired(boundary4MoistSensor) &&
(mWaterAtEmptyLevel) &&
(!mPumpIsRunning)) {
if (digitalRead(mPlants[i].getPumpPin()) == LOW) {
Serial << "Plant" << (i+1) << " needs water" << endl;
switch (i)
{
case 0:
plant1.setProperty("switch").send(String("ON"));
break;
case 1:
plant2.setProperty("switch").send(String("ON"));
break;
case 2:
plant3.setProperty("switch").send(String("ON"));
break;
#if (MAX_PLANTS >= 4)
case 3:
plant4.setProperty("switch").send(String("ON"));
break;
case 4:
plant5.setProperty("switch").send(String("ON"));
break;
case 5:
plant6.setProperty("switch").send(String("ON"));
break;
#endif
}
}
digitalWrite(mPlants[i].getPumpPin(), HIGH);
mPumpIsRunning=true;
}
}
}
mLoopInited = true;
readAnalogValues();
if ((millis() % 1500) == 0) {
sensorLipo.setProperty("percent").send( String(100 * lipoSenor / 4095) );
sensorLipo.setProperty("volt").send( String(ADC_5V_TO_3V3(lipoSenor)) );
sensorSolar.setProperty("percent").send(String((100 * solarSensor ) / 4095));
sensorSolar.setProperty("volt").send( String(SOLAR_VOLT(solarSensor)) );
} else if ((millis() % 1000) == 0) {
float temp[2] = { TEMP_INIT_VALUE, TEMP_INIT_VALUE };
float* pFloat = temp;
int devices = dallas.readAllTemperatures(pFloat, 2);
if (devices < 2) {
if ((pFloat[0] > TEMP_INIT_VALUE) && (pFloat[0] < TEMP_MAX_VALUE) ) {
sensorTemp.setProperty("control").send( String(pFloat[0]));
}
} else if (devices >= 2) {
if ((pFloat[0] > TEMP_INIT_VALUE) && (pFloat[0] < TEMP_MAX_VALUE) ) {
sensorTemp.setProperty("temp").send( String(pFloat[0]));
}
if ((pFloat[1] > TEMP_INIT_VALUE) && (pFloat[1] < TEMP_MAX_VALUE) ) {
sensorTemp.setProperty("control").send( String(pFloat[1]));
}
}
}
/* Main Loop functionality */
if ((!mPumpIsRunning) || (!mWaterAtEmptyLevel) ) {
/* let the ESP sleep qickly, as nothing must be done */
if ((millis() >= (MIN_TIME_RUNNING * MS_TO_S)) && (deepSleepTime.get() > 0)) {
mDeepSleep = true;
Serial << "No Water or Pump" << endl;
}
}
/* Always check, that after 5 minutes the device is sleeping */
/* Pump is running, go to sleep after defined time */
if ((millis() >= (((MIN_TIME_RUNNING + abs(wateringTime.get())) * MS_TO_S) + 5)) &&
(deepSleepTime.get() > 0)) {
Serial << "No sleeping activated (maximum)" << endl;
Serial << "Pump was running:" << mPumpIsRunning << "Water level is empty: " << mWaterAtEmptyLevel << endl;
mDeepSleep = true;
} else if ((millis() >= (((MIN_TIME_RUNNING + abs(wateringTime.get())) * MS_TO_S) + 0)) &&
(deepSleepTime.get() > 0)) {
Serial << "Maximum time reached: " << endl;
Serial << (mPumpIsRunning ? "Pump was running " : "No Pump ") << (mWaterAtEmptyLevel ? "Water level is empty" : "Water available") << endl;
mDeepSleep = true;
}
}
bool switchGeneralPumpHandler(const int pump, const HomieRange& range, const String& value) {
if (range.isRange) return false; // only one switch is present
switch (pump)
{
#if MAX_PLANTS >= 1
case 0:
#endif
#if MAX_PLANTS >= 2
case 1:
#endif
#if MAX_PLANTS >= 3
#endif
case 2:
#if MAX_PLANTS >= 4
case 3:
#endif
#if MAX_PLANTS >= 5
case 4:
#endif
#if MAX_PLANTS >= 6
case 5:
#endif
if ((value.equals("ON")) || (value.equals("On")) || (value.equals("on")) || (value.equals("true"))) {
digitalWrite(mPlants[pump].getPumpPin(), HIGH);
return true;
} else if ((value.equals("OFF")) || (value.equals("Off")) || (value.equals("off")) || (value.equals("false")) ) {
digitalWrite(mPlants[pump].getPumpPin(), LOW);
return true;
} else {
return false;
}
break;
default:
return false;
}
}
/**
* @brief Handle Mqtt commands for the pumpe, responsible for the first plant
*
* @param range multiple transmitted values (not used for this function)
* @param value single value
* @return true when the command was parsed and executed succuessfully
* @return false on errors when parsing the request
*/
bool switch1Handler(const HomieRange& range, const String& value) {
return switchGeneralPumpHandler(0, range, value);
}
/**
* @brief Handle Mqtt commands for the pumpe, responsible for the second plant
*
* @param range multiple transmitted values (not used for this function)
* @param value single value
* @return true when the command was parsed and executed succuessfully
* @return false on errors when parsing the request
*/
bool switch2Handler(const HomieRange& range, const String& value) {
return switchGeneralPumpHandler(1, range, value);
}
/**
* @brief Handle Mqtt commands for the pumpe, responsible for the third plant
*
* @param range multiple transmitted values (not used for this function)
* @param value single value
* @return true when the command was parsed and executed succuessfully
* @return false on errors when parsing the request
*/
bool switch3Handler(const HomieRange& range, const String& value) {
return switchGeneralPumpHandler(2, range, value);
}
/**
* @brief Sensors, that are connected to GPIOs, mandatory for WIFI.
* These sensors (ADC2) can only be read when no Wifi is used.
*/
void readSensors() {
/* activate all sensors */
pinMode(OUTPUT_SENSOR, OUTPUT);
digitalWrite(OUTPUT_SENSOR, HIGH);
/* Use Pump 4 to activate and deactivate the Sensors */
#if (MAX_PLANTS < 4)
pinMode(OUTPUT_PUMP4, OUTPUT);
digitalWrite(OUTPUT_PUMP4, HIGH);
#endif
delay(100);
/* wait before reading something */
for (int readCnt=0;readCnt < AMOUNT_SENOR_QUERYS; readCnt++) {
for(int i=0; i < MAX_PLANTS; i++) {
mPlants[i].addSenseValue(analogRead(mPlants[i].getSensorPin()));
}
}
#ifndef HC_SR04
mWaterAtEmptyLevel = digitalRead(INPUT_WATER_EMPTY);
mWaterLow = digitalRead(INPUT_WATER_LOW);
mOverflow = digitalRead(INPUT_WATER_OVERFLOW);
#else
/* Use the Ultrasonic sensor to measure waterLevel */
/* deactivate all sensors and measure the pulse */
digitalWrite(INPUT_WATER_EMPTY, LOW);
delayMicroseconds(2);
digitalWrite(INPUT_WATER_EMPTY, HIGH);
delayMicroseconds(10);
digitalWrite(INPUT_WATER_EMPTY, LOW);
float duration = pulseIn(INPUT_WATER_LOW, HIGH);
float distance = (duration*.0343)/2;
mWaterGone = (int) distance;
Serial << "HC_SR04 | Distance : " << String(distance) << " cm" << endl;
#endif
/* deactivate the sensors */
digitalWrite(OUTPUT_SENSOR, LOW);
#if (MAX_PLANTS < 4)
digitalWrite(OUTPUT_PUMP4, LOW);
#endif
}
/**
* @brief Startup function
* Is called once, the controller is started
*/
void setup() {
/* Required to read the temperature once */
float temp[2] = {0, 0};
float* pFloat = temp;
/* read button */
pinMode(BUTTON, INPUT);
/* Prepare Water sensors */
pinMode(INPUT_WATER_EMPTY, INPUT);
pinMode(INPUT_WATER_LOW, INPUT);
pinMode(INPUT_WATER_OVERFLOW, INPUT);
Serial.begin(115200);
Serial.setTimeout(1000); // Set timeout of 1 second
Serial << endl << endl;
Serial << "Read analog sensors..." << endl;
/* Disable Wifi and bluetooth */
WiFi.mode(WIFI_OFF);
/* now ADC2 can be used */
readSensors();
/* activate Wifi again */
WiFi.mode(WIFI_STA);
Homie_setFirmware("PlantControl", FIRMWARE_VERSION);
Homie.setLoopFunction(loopHandler);
// Load the settings
deepSleepTime.setDefaultValue(0);
deepSleepNightTime.setDefaultValue(0);
wateringTime.setDefaultValue(60);
plantCnt.setDefaultValue(0).setValidator([] (long candidate) {
return ((candidate >= 0) && (candidate <= 6) );
});
plant1SensorTrigger.setDefaultValue(0);
plant2SensorTrigger.setDefaultValue(0);
plant3SensorTrigger.setDefaultValue(0);
#if (MAX_PLANTS >= 4)
plant4SensorTrigger.setDefaultValue(0);
plant5SensorTrigger.setDefaultValue(0);
plant6SensorTrigger.setDefaultValue(0);
#endif
#ifdef HC_SR04
waterLevel.setDefaultValue(50);
#endif
// Advertise topics
plant1.advertise("switch").setName("Pump 1")
.setDatatype("boolean")
.settable(switch1Handler);
plant1.advertise("moist").setName("Percent")
.setDatatype("number")
.setUnit("%");
plant2.advertise("switch").setName("Pump 2")
.setDatatype("boolean")
.settable(switch2Handler);
plant2.advertise("moist").setName("Percent")
.setDatatype("number")
.setUnit("%");
plant3.advertise("switch").setName("Pump 3")
.setDatatype("boolean")
.settable(switch3Handler);
plant3.advertise("moist").setName("Percent")
.setDatatype("number")
.setUnit("%");
#if (MAX_PLANTS >= 4)
plant4.advertise("moist").setName("Percent")
.setDatatype("number")
.setUnit("%");
plant5.advertise("moist").setName("Percent")
.setDatatype("number")
.setUnit("%");
plant6.advertise("moist").setName("Percent")
.setDatatype("number")
.setUnit("%");
#endif
sensorTemp.advertise("control")
.setName("Temperature")
.setDatatype("number")
.setUnit("°C");
sensorTemp.advertise("temp")
.setName("Temperature")
.setDatatype("number")
.setUnit("°C");
sensorLipo.advertise("percent")
.setName("Percent")
.setDatatype("number")
.setUnit("%");
sensorLipo.advertise("volt")
.setName("Volt")
.setDatatype("number")
.setUnit("V");
sensorSolar.advertise("percent")
.setName("Percent")
.setDatatype("number")
.setUnit("%");
sensorSolar.advertise("volt")
.setName("Volt")
.setDatatype("number")
.setUnit("V");
sensorWater.advertise("remaining").setDatatype("number").setUnit("%");
Homie.setup();
/* Intialize inputs and outputs */
for(int i=0; i < plantCnt.get(); i++) {
pinMode(mPlants[i].getPumpPin(), OUTPUT);
pinMode(mPlants[i].getSensorPin(), ANALOG);
digitalWrite(mPlants[i].getPumpPin(), LOW);
}
/* Setup Solar and Lipo measurement */
pinMode(SENSOR_LIPO, ANALOG);
pinMode(SENSOR_SOLAR, ANALOG);
/* Read analog values at the start */
do {
readAnalogValues();
} while (readCounter != 0);
// Configure Deep Sleep:
if ((deepSleepNightTime.get() > 0) &&
( SOLAR_VOLT(solarSensor) < MINIMUM_SOLAR_VOLT)) {
Serial << "HOMIE | Setup sleeping for " << deepSleepNightTime.get() << " ms as sun is at " << SOLAR_VOLT(solarSensor) << "V" << endl;
uint64_t usSleepTime = deepSleepNightTime.get() * 1000U;
esp_sleep_enable_timer_wakeup(usSleepTime);
}else if (deepSleepTime.get()) {
Serial << "HOMIE | Setup sleeping for " << deepSleepTime.get() << " ms" << endl;
uint64_t usSleepTime = deepSleepTime.get() * 1000U;
esp_sleep_enable_timer_wakeup(usSleepTime);
}
if ( (ADC_5V_TO_3V3(lipoSenor) < MINIMUM_LIPO_VOLT) && (deepSleepTime.get()) ) {
long sleepEmptyLipo = (deepSleepTime.get() * EMPTY_LIPO_MULTIPL);
Serial << "HOMIE | Change sleeping to " << sleepEmptyLipo << " ms as lipo is at " << ADC_5V_TO_3V3(lipoSenor) << "V" << endl;
esp_sleep_enable_timer_wakeup(sleepEmptyLipo * 1000U);
mDeepSleep = true;
}
/* Read the temperature sensors once, as first time 85 degree is returned */
Serial << "DS18B20 | sensors: " << String(dallas.readDevices()) << endl;
delay(200);
if (dallas.readAllTemperatures(pFloat, 2) > 0) {
Serial << "DS18B20 | Temperature 1: " << String(temp[0]) << endl;
Serial << "DS18B20 | Temperature 2: " << String(temp[1]) << endl;
}
delay(200);
if (dallas.readAllTemperatures(pFloat, 2) > 0) {
Serial << "Temperature 1: " << String(temp[0]) << endl;
Serial << "Temperature 2: " << String(temp[1]) << endl;
}
}
/**
* @brief Cyclic call
* Executs the Homie base functionallity or triggers sleeping, if requested.
*/
void loop() {
if (!mDeepSleep) {
if (Serial.available() > 0) {
// read the incoming byte:
int incomingByte = Serial.read();
switch ((char) incomingByte)
{
case 'P':
Serial << "Activate Sensor OUTPUT " << endl;
pinMode(OUTPUT_SENSOR, OUTPUT);
digitalWrite(OUTPUT_SENSOR, HIGH);
break;
case 'p':
Serial << "Deactivate Sensor OUTPUT " << endl;
pinMode(OUTPUT_SENSOR, OUTPUT);
digitalWrite(OUTPUT_SENSOR, LOW);
break;
default:
break;
}
}
if ((digitalRead(BUTTON) == LOW) && (mButtonClicks % 2) == 0) {
float temp[2] = {0, 0};
float* pFloat = temp;
mButtonClicks++;
Serial << "SELF TEST (clicks: " << String(mButtonClicks) << ")" << endl;
Serial << "DS18B20 sensors: " << String(dallas.readDevices()) << endl;
delay(200);
if (dallas.readAllTemperatures(pFloat, 2) > 0) {
Serial << "Temperature 1: " << String(temp[0]) << endl;
Serial << "Temperature 2: " << String(temp[1]) << endl;
}
switch(mButtonClicks) {
case 1:
case 3:
case 5:
if (mButtonClicks > 1) {
Serial << "Read analog sensors..." << endl;
/* Disable Wifi and bluetooth */
WiFi.mode(WIFI_OFF);
delay(50);
/* now ADC2 can be used */
readSensors();
}
#ifndef HC_SR04
Serial << "Water Low: " << String(mWaterLow) << endl;
Serial << "Water Empty: " << String(mWaterAtEmptyLevel) << endl;
Serial << "Water Overflow: " << String(mOverflow) << endl;
#else
Serial << "Water gone: " << String(mWaterGone) << " cm" << endl;
#endif
for(int i=0; i < MAX_PLANTS; i++) {
mPlants[i].calculateSensorValue(AMOUNT_SENOR_QUERYS);
Serial << "Moist Sensor " << (i+1) << ": " << String(mPlants[i].getSensorValue()) << " Volt: " << String(ADC_5V_TO_3V3(mPlants[i].getSensorValue())) << endl;
}
/* Read enough values */
do {
readAnalogValues();
Serial << "Read Analog (" << String(readCounter) << ")" << endl;;
} while (readCounter != 0);
Serial << "Lipo Sensor - Raw: " << String(lipoSenor) << " Volt: " << String(ADC_5V_TO_3V3(lipoSenor)) << endl;
Serial << "Solar Sensor - Raw: " << String(solarSensor) << " Volt: " << String(SOLAR_VOLT(solarSensor)) << endl;
break;
case 7:
Serial << "Activate Sensor OUTPUT " << endl;
pinMode(OUTPUT_SENSOR, OUTPUT);
digitalWrite(OUTPUT_SENSOR, HIGH);
break;
case 9:
Serial << "Activate Pump1 GPIO" << String(mPlants[0].getPumpPin()) << endl;
digitalWrite(mPlants[0].getPumpPin(), HIGH);
break;
case 11:
Serial << "Activate Pump2 GPIO" << String(mPlants[1].getPumpPin()) << endl;
digitalWrite(mPlants[1].getPumpPin(), HIGH);
break;
case 13:
Serial << "Activate Pump3 GPIO" << String(mPlants[2].getPumpPin()) << endl;
digitalWrite(mPlants[2].getPumpPin(), HIGH);
break;
case 15:
Serial << "Activate Pump4/Sensor GPIO" << String(OUTPUT_PUMP4) << endl;
digitalWrite(OUTPUT_PUMP4, HIGH);
break;
default:
Serial << "No further tests! Please reboot" << endl;
}
Serial.flush();
}else if (mButtonClicks > 0 && (digitalRead(BUTTON) == HIGH) && (mButtonClicks % 2) == 1) {
Serial << "Self Test Ended" << endl;
mButtonClicks++;
/* Always reset all outputs */
digitalWrite(OUTPUT_SENSOR, LOW);
for(int i=0; i < MAX_PLANTS; i++) {
digitalWrite(mPlants[i].getPumpPin(), LOW);
}
digitalWrite(OUTPUT_PUMP4, LOW);
} else if (mButtonClicks == 0) {
Homie.loop();
}
} else {
Serial << (millis()/ 1000) << "s running; sleeeping ..." << endl;
Serial.flush();
esp_deep_sleep_start();
}
}