PlantCtrl/rust/src/main.rs
2024-08-11 19:08:30 +02:00

1087 lines
35 KiB
Rust

use std::{
fmt::Display,
sync::{atomic::AtomicBool, Arc, Mutex},
};
use anyhow::Result;
use chrono::{DateTime, Datelike, TimeDelta, Timelike, Utc};
use chrono_tz::{Europe::Berlin, Tz};
use config::Mode;
use esp_idf_hal::delay::Delay;
use esp_idf_sys::{
esp_deep_sleep, esp_ota_get_app_partition_count, esp_ota_get_running_partition,
esp_ota_get_state_partition, esp_ota_img_states_t, esp_ota_img_states_t_ESP_OTA_IMG_ABORTED,
esp_ota_img_states_t_ESP_OTA_IMG_INVALID, esp_ota_img_states_t_ESP_OTA_IMG_NEW,
esp_ota_img_states_t_ESP_OTA_IMG_PENDING_VERIFY, esp_ota_img_states_t_ESP_OTA_IMG_UNDEFINED,
esp_ota_img_states_t_ESP_OTA_IMG_VALID, esp_restart, vTaskDelay, CONFIG_FREERTOS_HZ,
};
use log::error;
use once_cell::sync::Lazy;
use plant_hal::{CreatePlantHal, PlantCtrlBoard, PlantCtrlBoardInteraction, PlantHal, PLANT_COUNT};
use serde::{Deserialize, Serialize};
use crate::{
config::{Config, WifiConfig},
espota::{mark_app_valid, rollback_and_reboot},
webserver::webserver::{httpd, httpd_initial},
};
mod config;
pub mod espota;
pub mod plant_hal;
const MOIST_SENSOR_MAX_FREQUENCY: u32 = 50000; // 60kHz (500Hz margin)
const MOIST_SENSOR_MIN_FREQUENCY: u32 = 500; // 0.5kHz (500Hz margin)
const FROM: (f32, f32) = (
MOIST_SENSOR_MIN_FREQUENCY as f32,
MOIST_SENSOR_MAX_FREQUENCY as f32,
);
const TO: (f32, f32) = (0_f32, 100_f32);
pub static BOARD_ACCESS: Lazy<Mutex<PlantCtrlBoard>> = Lazy::new(|| PlantHal::create().unwrap());
pub static STAY_ALIVE: Lazy<AtomicBool> = Lazy::new(|| AtomicBool::new(false));
mod webserver {
pub mod webserver;
}
#[derive(Serialize, Deserialize, Debug, PartialEq)]
enum OnlineMode {
Offline,
Wifi,
SnTp,
Online,
}
#[derive(Serialize, Deserialize, Debug, PartialEq)]
enum WaitType {
InitialConfig,
FlashError,
NormalConfig,
StayAlive,
StayAliveBtn
}
#[derive(Serialize, Deserialize, Debug, PartialEq, Default)]
struct LightState {
active: bool,
out_of_work_hour: bool,
battery_low: bool,
is_day: bool,
}
#[derive(Debug, PartialEq, Default)]
struct PlantState {
a: Option<u8>,
a_raw: Option<i32>,
b: Option<u8>,
b_raw: Option<i32>,
consecutive_pump_count: u32,
after_p: Option<u8>,
do_water: bool,
dry: bool,
active: bool,
pump_error: bool,
not_effective: bool,
cooldown: bool,
no_water: bool,
sensor_error_a: Option<SensorError>,
sensor_error_b: Option<SensorError>,
out_of_work_hour: bool,
next_pump: Option<DateTime<Tz>>,
}
#[derive(Serialize, Deserialize, Debug, PartialEq)]
enum SensorError {
Unknown,
ShortCircuit { hz: f32, max: f32 },
OpenCircuit { hz: f32, min: f32 },
}
#[derive(Debug, PartialEq, Default)]
struct TankState {
enough_water: bool,
warn_level: bool,
left_ml: u32,
sensor_error: bool,
raw: u16,
}
#[derive(Serialize)]
struct TankStateMQTT {
enough_water: bool,
warn_level: bool,
left_ml: u32,
sensor_error: bool,
raw: u16,
water_frozen: String,
}
#[derive(Serialize)]
struct PlantStateMQTT<'a> {
a: &'a str,
a_raw: &'a str,
b: &'a str,
b_raw: &'a str,
mode: &'a str,
consecutive_pump_count: u32,
dry: bool,
active: bool,
pump_error: bool,
not_effective: bool,
cooldown: bool,
out_of_work_hour: bool,
last_pump: &'a str,
next_pump: &'a str,
}
#[derive(Serialize)]
struct BatteryState<'a> {
voltage_milli_volt: &'a str,
current_milli_ampere: &'a str,
cycle_count: &'a str,
design_milli_ampere: &'a str,
remaining_milli_ampere: &'a str,
state_of_charge: &'a str,
state_of_health: &'a str,
}
fn safe_main() -> anyhow::Result<()> {
// It is necessary to call this function once. Otherwise some patches to the runtime
// implemented by esp-idf-sys might not link properly. See https://github.com/esp-rs/esp-idf-template/issues/71
esp_idf_svc::sys::link_patches();
// Bind the log crate to the ESP Logging facilities
esp_idf_svc::log::EspLogger::initialize_default();
if esp_idf_sys::CONFIG_MAIN_TASK_STACK_SIZE < 25000 {
error!(
"stack too small: {} bail!",
esp_idf_sys::CONFIG_MAIN_TASK_STACK_SIZE
);
return Ok(());
}
log::info!("Startup Rust");
let git_hash = env!("VERGEN_GIT_DESCRIBE");
let build_timestamp = env!("VERGEN_BUILD_TIMESTAMP");
println!(
"Version useing git has {} build on {}",
git_hash, build_timestamp
);
let count = unsafe { esp_ota_get_app_partition_count() };
println!("Partit ion count is {}", count);
let mut ota_state: esp_ota_img_states_t = 0;
let running_partition = unsafe { esp_ota_get_running_partition() };
let address = unsafe { (*running_partition).address };
println!("Partition address is {}", address);
let ota_state_string = unsafe {
esp_ota_get_state_partition(running_partition, &mut ota_state);
if ota_state == esp_ota_img_states_t_ESP_OTA_IMG_NEW {
format!("Partition state is {}", "ESP_OTA_IMG_NEW")
} else if ota_state == esp_ota_img_states_t_ESP_OTA_IMG_PENDING_VERIFY {
format!("Partition state is {}", "ESP_OTA_IMG_PENDING_VERIFY")
} else if ota_state == esp_ota_img_states_t_ESP_OTA_IMG_VALID {
format!("Partition state is {}", "ESP_OTA_IMG_VALID")
} else if ota_state == esp_ota_img_states_t_ESP_OTA_IMG_INVALID {
format!("Partition state is {}", "ESP_OTA_IMG_INVALID")
} else if ota_state == esp_ota_img_states_t_ESP_OTA_IMG_ABORTED {
format!("Partition state is {}", "ESP_OTA_IMG_ABORTED")
} else if ota_state == esp_ota_img_states_t_ESP_OTA_IMG_UNDEFINED {
format!("Partition state is {}", "ESP_OTA_IMG_UNDEFINED")
} else {
format!("Partition state is {}", ota_state)
}
};
println!("{}", ota_state_string);
println!("Board hal init");
let mut board: std::sync::MutexGuard<'_, PlantCtrlBoard<'_>> = BOARD_ACCESS.lock().unwrap();
board.general_fault(false);
println!("Mounting filesystem");
board.mount_file_system()?;
let free_space = board.file_system_size()?;
println!(
"Mounted, total space {} used {} free {}",
free_space.total_size, free_space.used_size, free_space.free_size
);
let time = board.time();
let mut cur = match time {
Ok(cur) => cur,
Err(err) => {
log::error!("time error {}", err);
DateTime::from_timestamp_millis(0).unwrap()
}
};
//check if we know the time current > 2020
if cur.year() < 2020 {
if board.is_day() {
//assume TZ safe times ;)
cur = *cur.with_hour(15).get_or_insert(cur);
} else {
cur = *cur.with_hour(3).get_or_insert(cur);
}
}
println!("cur is {}", cur);
let mut to_config = false;
if board.is_config_reset() {
board.general_fault(true);
println!("Reset config is pressed, waiting 5s");
for _i in 0..5 {
board.general_fault(true);
Delay::new_default().delay_ms(100);
board.general_fault(false);
Delay::new_default().delay_ms(100);
}
if board.is_config_reset() {
to_config = true;
println!("Reset config is still pressed, proceed to config mode");
for _i in 0..25 {
board.general_fault(true);
Delay::new_default().delay_ms(25);
board.general_fault(false);
Delay::new_default().delay_ms(25);
}
if board.is_config_reset() {
println!("Reset config is still pressed, proceed to delete configs");
match board.remove_configs() {
Ok(case) => {
println!("Succeeded in deleting config {}", case);
}
Err(err) => {
println!("Could not remove config files, system borked {}", err);
//terminate main app and freeze
wait_infinity(WaitType::FlashError, Arc::new(AtomicBool::new(false)));
}
}
} else {
}
} else {
board.general_fault(false);
}
}
let mut online_mode = OnlineMode::Offline;
let wifi_conf = board.get_wifi();
let wifi: WifiConfig;
match wifi_conf {
Ok(conf) => {
wifi = conf;
}
Err(err) => {
if board.is_wifi_config_file_existant() {
if ota_state == esp_ota_img_states_t_ESP_OTA_IMG_PENDING_VERIFY {
println!("Config seem to be unparsable after upgrade, reverting");
rollback_and_reboot()?;
}
}
println!("Missing wifi config, entering initial config mode {}", err);
board.wifi_ap().unwrap();
//config upload will trigger reboot!
drop(board);
let reboot_now = Arc::new(AtomicBool::new(false));
let _webserver = httpd_initial(reboot_now.clone());
wait_infinity(WaitType::InitialConfig, reboot_now.clone());
}
};
println!("attempting to connect wifi");
let mut ip_address: Option<String> = None;
match board.wifi(wifi.ssid, wifi.password, 10000) {
Ok(ip_info) => {
ip_address = Some(ip_info.ip.to_string());
online_mode = OnlineMode::Wifi;
}
Err(_) => {
println!("Offline mode");
board.general_fault(true);
}
}
if online_mode == OnlineMode::Wifi {
match board.sntp(1000 * 5) {
Ok(new_time) => {
cur = new_time;
online_mode = OnlineMode::SnTp;
}
Err(err) => {
println!("sntp error: {}", err);
board.general_fault(true);
}
}
}
println!("Running logic at utc {}", cur);
let europe_time = cur.with_timezone(&Berlin);
println!("Running logic at europe/berlin {}", europe_time);
let config: Config;
match board.get_config() {
Ok(valid) => {
config = valid;
}
Err(err) => {
println!("Missing normal config, entering config mode {}", err);
//config upload will trigger reboot!
drop(board);
let reboot_now = Arc::new(AtomicBool::new(false));
let _webserver = httpd(reboot_now.clone());
wait_infinity(WaitType::NormalConfig, reboot_now.clone());
}
}
//do mqtt before config check, as mqtt might configure
if online_mode == OnlineMode::SnTp {
match board.mqtt(&config) {
Ok(_) => {
println!("Mqtt connection ready");
online_mode = OnlineMode::Online;
}
Err(err) => {
println!("Could not connect mqtt due to {}", err);
}
}
}
if online_mode == OnlineMode::Online {
match ip_address {
Some(add_some) => {
let _ = board.mqtt_publish(&config, "/firmware/address", add_some.as_bytes());
}
None => {
let _ = board.mqtt_publish(&config, "/firmware/address", "N/A?".as_bytes());
}
}
let _ = board.mqtt_publish(&config, "/firmware/githash", git_hash.as_bytes());
let _ = board.mqtt_publish(&config, "/firmware/buildtime", build_timestamp.as_bytes());
let _ = board.mqtt_publish(
&config,
"/firmware/last_online",
europe_time.to_rfc3339().as_bytes(),
);
let _ = board.mqtt_publish(&config, "/firmware/ota_state", ota_state_string.as_bytes());
let _ = board.mqtt_publish(
&config,
"/firmware/partition_address",
format!("{:#06x}", address).as_bytes(),
);
let _ = board.mqtt_publish(&config, "/state", "online".as_bytes());
publish_battery_state(&mut board, &config);
}
let tank_state = determine_tank_state(&mut board, &config);
let mut tank_state_mqtt = TankStateMQTT {
enough_water: tank_state.enough_water,
left_ml: tank_state.left_ml,
warn_level: tank_state.warn_level,
sensor_error: tank_state.sensor_error,
raw: tank_state.raw,
water_frozen: "".to_owned(),
};
let mut water_frozen = false;
let mut temp: Option<f32> = None;
for _attempt in 0..5 {
let water_temperature = board.water_temperature_c();
match water_temperature {
Ok(res) => {
temp = Some(res);
break;
}
Err(err) => {
println!("Could not get water temp {} attempt {}", err, _attempt)
}
}
}
match temp {
Some(res) => {
println!("Water temp is {}", res);
if res < 4_f32 {
water_frozen = true;
}
tank_state_mqtt.water_frozen = water_frozen.to_string();
}
None => tank_state_mqtt.water_frozen = "tank sensor error".to_owned(),
}
if online_mode == OnlineMode::Online {
match serde_json::to_string(&tank_state_mqtt) {
Ok(state) => {
let _ = board.mqtt_publish(&config, "/water", state.as_bytes());
}
Err(err) => {
println!("Error publishing tankstate {}", err);
}
};
}
let mut plantstate: [PlantState; PLANT_COUNT] = core::array::from_fn(|_| PlantState {
..Default::default()
});
let plant_to_pump = determine_next_plant(
&mut plantstate,
europe_time,
&tank_state,
water_frozen,
&config,
&mut board,
);
let stay_alive_mqtt = STAY_ALIVE.load(std::sync::atomic::Ordering::Relaxed);
let stay_alive = stay_alive_mqtt;
println!("Check stay alive, current state is {}", stay_alive);
let mut did_pump = false;
match plant_to_pump {
Some(plant) => {
let state = &mut plantstate[plant];
state.consecutive_pump_count = board.consecutive_pump_count(plant) + 1;
board.store_consecutive_pump_count(plant, state.consecutive_pump_count);
if state.consecutive_pump_count > config.max_consecutive_pump_count.into() {
state.not_effective = true;
board.fault(plant, true);
}
let plant_config = config.plants[plant];
println!(
"Trying to pump for {}s with pump {} now",
plant_config.pump_time_s, plant
);
if !stay_alive && !to_config {
did_pump = true;
board.any_pump(true)?;
board.store_last_pump_time(plant, cur);
board.pump(plant, true)?;
board.last_pump_time(plant);
state.active = true;
for _ in 0..plant_config.pump_time_s {
unsafe { vTaskDelay(CONFIG_FREERTOS_HZ) };
//info message or something?
}
board.pump(plant, false)?;
}
}
None => {
println!("Nothing to do");
}
}
if online_mode == OnlineMode::Online {
update_plant_state(&mut plantstate, &mut board, &config);
}
let mut light_state = LightState {
..Default::default()
};
let is_day = board.is_day();
light_state.is_day = is_day;
light_state.out_of_work_hour = !in_time_range(
&europe_time,
config.night_lamp_hour_start,
config.night_lamp_hour_end,
);
let state_of_charge = board.state_charge_percent().unwrap_or(0);
if state_of_charge < 30 {
board.set_low_voltage_in_cycle();
} else if state_of_charge > 50 {
board.clear_low_voltage_in_cycle();
}
light_state.battery_low = board.low_voltage_in_cycle();
if !light_state.out_of_work_hour {
if config.night_lamp_only_when_dark {
if !light_state.is_day {
if light_state.battery_low {
board.light(false).unwrap();
} else {
light_state.active = true;
board.light(true).unwrap();
}
}
} else {
if light_state.battery_low {
board.light(false).unwrap();
} else {
light_state.active = true;
board.light(true).unwrap();
}
}
} else {
light_state.active = false;
board.light(false).unwrap();
}
println!("Lightstate is {:?}", light_state);
if online_mode == OnlineMode::Online {
match serde_json::to_string(&light_state) {
Ok(state) => {
let _ = board.mqtt_publish(&config, "/light", state.as_bytes());
}
Err(err) => {
println!("Error publishing lightstate {}", err);
}
};
}
let deep_sleep_duration_minutes: u32 = if state_of_charge < 10 {
if online_mode == OnlineMode::Online {
let _ = board.mqtt_publish(&config, "/deepsleep", "low Volt 12h".as_bytes());
}
12 * 60
} else if is_day {
if did_pump {
if online_mode == OnlineMode::Online {
let _ = board.mqtt_publish(&config, "/deepsleep", "after pump".as_bytes());
}
0
} else {
if online_mode == OnlineMode::Online {
let _ = board.mqtt_publish(&config, "/deepsleep", "normal 20m".as_bytes());
}
20
}
} else {
if online_mode == OnlineMode::Online {
let _ = board.mqtt_publish(&config, "/deepsleep", "night 1h".as_bytes());
}
60
};
if online_mode == OnlineMode::Online {
let _ = board.mqtt_publish(&config, "/state", "sleep".as_bytes());
}
//determine next event
//is light out of work trigger soon?
//is battery low ??
//is deep sleep
mark_app_valid();
if to_config {
println!("Go to button triggerd stay alive");
drop(board);
let reboot_now = Arc::new(AtomicBool::new(false));
let _webserver = httpd(reboot_now.clone());
wait_infinity(WaitType::StayAliveBtn, reboot_now.clone());
}
if stay_alive {
println!("Go to stay alive move");
drop(board);
let reboot_now = Arc::new(AtomicBool::new(false));
let _webserver = httpd(reboot_now.clone());
wait_infinity(WaitType::StayAlive, reboot_now.clone());
}
unsafe { esp_deep_sleep(1000 * 1000 * 60 * deep_sleep_duration_minutes as u64) };
}
fn publish_battery_state(
board: &mut std::sync::MutexGuard<'_, PlantCtrlBoard<'_>>,
config: &Config,
) {
let bat = BatteryState {
voltage_milli_volt: &to_string(&board.voltage_milli_volt()),
current_milli_ampere: &to_string(&board.average_current_milli_ampere()),
cycle_count: &to_string(&board.cycle_count()),
design_milli_ampere: &to_string(&board.design_milli_ampere_hour()),
remaining_milli_ampere: &to_string(&board.remaining_milli_ampere_hour()),
state_of_charge: &to_string(&board.state_charge_percent()),
state_of_health: &to_string(&board.state_health_percent()),
};
match serde_json::to_string(&bat) {
Ok(state) => {
let _ = board.mqtt_publish(&config, "/battery", state.as_bytes());
}
Err(err) => {
println!("Error publishing battery_state {}", err);
}
};
}
fn determine_tank_state(
board: &mut std::sync::MutexGuard<'_, PlantCtrlBoard<'_>>,
config: &Config,
) -> TankState {
if config.tank_sensor_enabled {
let mut rv: TankState = TankState {
..Default::default()
};
let success = board
.tank_sensor_percent()
.and_then(|raw| {
rv.raw = raw;
return map_range(
(
config.tank_empty_percent as f32,
config.tank_full_percent as f32,
),
raw as f32,
);
})
.and_then(|percent| {
rv.left_ml = ((percent * config.tank_useable_ml as f32) / 100_f32) as u32;
println!(
"Tank sensor returned mv {} as {}% leaving {} ml useable",
rv.raw, percent as u8, rv.left_ml
);
if config.tank_warn_percent > percent as u8 {
board.general_fault(true);
println!(
"Low water, current percent is {}, minimum warn level is {}",
percent as u8, config.tank_warn_percent
);
rv.warn_level = true;
}
if config.tank_empty_percent < percent as u8 {
println!(
"Enough water, current percent is {}, minimum empty level is {}",
percent as u8, config.tank_empty_percent
);
rv.enough_water = true;
}
return Ok(());
});
match success {
Err(err) => {
println!("Could not determine tank value due to {}", err);
board.general_fault(true);
rv.sensor_error = true;
}
Ok(_) => {}
}
return rv;
}
return TankState {
warn_level: false,
enough_water: true,
left_ml: 1337,
sensor_error: false,
raw: 0,
};
}
fn determine_state_target_moisture_for_plant(
board: &mut std::sync::MutexGuard<'_, PlantCtrlBoard<'_>>,
plant: usize,
state: &mut PlantState,
config: &Config,
tank_state: &TankState,
cur: DateTime<Tz>,
) {
let plant_config = &config.plants[plant];
if plant_config.mode == Mode::OFF {
return;
}
match board.measure_moisture_hz(plant, plant_hal::Sensor::A) {
Ok(a) => {
state.a_raw = Some(a);
let mapped = map_range_moisture(a as f32);
match mapped {
Ok(result) => state.a = Some(result),
Err(err) => {
state.sensor_error_a = Some(err);
}
}
}
Err(_) => {
state.sensor_error_a = Some(SensorError::Unknown);
}
}
if plant_config.sensor_b {
match board.measure_moisture_hz(plant, plant_hal::Sensor::B) {
Ok(b) => {
state.b_raw = Some(b);
let mapped = map_range_moisture(b as f32);
match mapped {
Ok(result) => state.b = Some(result),
Err(err) => {
state.sensor_error_b = Some(err);
}
}
}
Err(_) => {
state.sensor_error_b = Some(SensorError::Unknown);
}
}
}
//FIXME how to average analyze whatever?
let a_low = state.a.is_some() && state.a.unwrap() < plant_config.target_moisture;
let b_low = state.b.is_some() && state.b.unwrap() < plant_config.target_moisture;
if a_low || b_low {
state.dry = true;
if tank_state.sensor_error && !config.tank_allow_pumping_if_sensor_error {
//ignore is ok
} else if !tank_state.enough_water {
state.no_water = true;
}
}
let duration = TimeDelta::try_minutes(plant_config.pump_cooldown_min as i64).unwrap();
let last_pump = board.last_pump_time(plant);
match last_pump {
Some(last_pump) => {
let next_pump = last_pump + duration;
if next_pump > cur {
let europe_time = next_pump.with_timezone(&Berlin);
state.next_pump = Some(europe_time);
state.cooldown = true;
}
}
None => {
println!(
"Could not restore last pump for plant {}, restoring",
plant + 1
);
board.store_last_pump_time(plant, DateTime::from_timestamp_millis(0).unwrap());
state.pump_error = true;
}
}
if !in_time_range(
&cur,
plant_config.pump_hour_start,
plant_config.pump_hour_end,
) {
state.out_of_work_hour = true;
}
if state.dry && !state.no_water && !state.cooldown && !state.out_of_work_hour {
state.do_water = true;
}
}
fn determine_state_timer_only_for_plant(
board: &mut std::sync::MutexGuard<'_, PlantCtrlBoard<'_>>,
plant: usize,
state: &mut PlantState,
config: &Config,
tank_state: &TankState,
cur: DateTime<Tz>,
) {
let plant_config = &config.plants[plant];
let duration = TimeDelta::try_minutes(plant_config.pump_cooldown_min as i64).unwrap();
let last_pump = board.last_pump_time(plant);
match last_pump {
Some(last_pump) => {
let next_pump = last_pump + duration;
if next_pump > cur {
let europe_time = next_pump.with_timezone(&Berlin);
state.next_pump = Some(europe_time);
state.cooldown = true;
} else {
if tank_state.sensor_error && !config.tank_allow_pumping_if_sensor_error {
state.do_water = true;
} else if !tank_state.enough_water {
state.no_water = true;
}
}
}
None => {
println!(
"Could not restore last pump for plant {}, restoring",
plant + 1
);
board.store_last_pump_time(plant, DateTime::from_timestamp_millis(0).unwrap());
state.pump_error = true;
}
}
}
fn determine_state_timer_and_deadzone_for_plant(
board: &mut std::sync::MutexGuard<'_, PlantCtrlBoard<'_>>,
plant: usize,
state: &mut PlantState,
config: &Config,
tank_state: &TankState,
cur: DateTime<Tz>,
) {
let plant_config = &config.plants[plant];
let duration = TimeDelta::try_minutes(plant_config.pump_cooldown_min as i64).unwrap();
let last_pump = board.last_pump_time(plant);
match last_pump {
Some(last_pump) => {
let next_pump = last_pump + duration;
if next_pump > cur {
let europe_time = next_pump.with_timezone(&Berlin);
state.next_pump = Some(europe_time);
state.cooldown = true;
}
if !in_time_range(
&cur,
plant_config.pump_hour_start,
plant_config.pump_hour_end,
) {
state.out_of_work_hour = true;
}
if !state.cooldown && !state.out_of_work_hour {
if tank_state.sensor_error && !config.tank_allow_pumping_if_sensor_error {
state.do_water = true;
} else if !tank_state.enough_water {
state.no_water = true;
}
}
}
None => {
println!(
"Could not restore last pump for plant {}, restoring",
plant + 1
);
board.store_last_pump_time(plant, DateTime::from_timestamp_millis(0).unwrap());
state.pump_error = true;
}
}
}
fn determine_next_plant(
plantstate: &mut [PlantState; PLANT_COUNT],
cur: DateTime<Tz>,
tank_state: &TankState,
water_frozen: bool,
config: &Config,
board: &mut std::sync::MutexGuard<'_, PlantCtrlBoard<'_>>,
) -> Option<usize> {
for plant in 0..PLANT_COUNT {
let state = &mut plantstate[plant];
let plant_config = &config.plants[plant];
match plant_config.mode {
config::Mode::OFF => {}
config::Mode::TargetMoisture => {
determine_state_target_moisture_for_plant(
board, plant, state, config, tank_state, cur,
);
}
config::Mode::TimerOnly => {
determine_state_timer_only_for_plant(board, plant, state, config, tank_state, cur);
}
config::Mode::TimerAndDeadzone => {
determine_state_timer_and_deadzone_for_plant(
board, plant, state, config, tank_state, cur,
);
}
}
if state.sensor_error_a.is_some() || state.sensor_error_b.is_some() {
board.fault(plant, true);
}
if !state.dry {
state.consecutive_pump_count = 0;
board.store_consecutive_pump_count(plant, 0);
}
println!("Plant {} state is {:?}", plant, state);
}
for plant in 0..PLANT_COUNT {
let state = &plantstate[plant];
println!(
"Checking for water plant {} with state {}",
plant, state.do_water
);
if !water_frozen {
if state.do_water {
return Some(plant);
}
}
}
println!("No plant needs water");
return None;
}
fn update_plant_state(
plantstate: &mut [PlantState; PLANT_COUNT],
board: &mut std::sync::MutexGuard<'_, PlantCtrlBoard<'_>>,
config: &Config,
) {
for plant in 0..PLANT_COUNT {
let state = &plantstate[plant];
let plant_config = config.plants[plant];
let mode = format!("{:?}", plant_config.mode);
let plant_dto = PlantStateMQTT {
a: &sensor_to_string(
&state.a,
&state.sensor_error_a,
plant_config.mode != Mode::OFF,
),
a_raw: &state.a_raw.unwrap_or(0).to_string(),
b: &sensor_to_string(&state.b, &state.sensor_error_b, plant_config.sensor_b),
b_raw: &state.b_raw.unwrap_or(0).to_string(),
active: state.active,
mode: &mode,
last_pump: &time_to_string_utc(board.last_pump_time(plant)),
next_pump: &time_to_string(state.next_pump),
consecutive_pump_count: state.consecutive_pump_count,
cooldown: state.cooldown,
dry: state.dry,
not_effective: state.not_effective,
out_of_work_hour: state.out_of_work_hour,
pump_error: state.pump_error,
};
match serde_json::to_string(&plant_dto) {
Ok(state) => {
let plant_topic = format!("/plant{}", plant + 1);
let _ = board.mqtt_publish(&config, &plant_topic, state.as_bytes());
//reduce speed as else messages will be dropped
Delay::new_default().delay_ms(200);
}
Err(err) => {
println!("Error publishing lightstate {}", err);
}
};
}
}
fn wait_infinity(wait_type: WaitType, reboot_now: Arc<AtomicBool>) -> ! {
let delay = match wait_type {
WaitType::InitialConfig => 250_u32,
WaitType::FlashError => 100_u32,
WaitType::NormalConfig => 500_u32,
WaitType::StayAlive => 1000_u32,
WaitType::StayAliveBtn => 25_u32
};
let led_count = match wait_type {
WaitType::InitialConfig => 8,
WaitType::FlashError => 8,
WaitType::NormalConfig => 4,
WaitType::StayAlive => 2,
WaitType::StayAliveBtn => 5
};
loop {
unsafe {
//do not trigger watchdog
for i in 0..8 {
BOARD_ACCESS.lock().unwrap().fault(i, i < led_count);
}
BOARD_ACCESS.lock().unwrap().general_fault(true);
vTaskDelay(delay);
BOARD_ACCESS.lock().unwrap().general_fault(false);
for i in 0..8 {
BOARD_ACCESS.lock().unwrap().fault(i, false);
}
vTaskDelay(delay);
if wait_type == WaitType::StayAlive
&& !STAY_ALIVE.load(std::sync::atomic::Ordering::Relaxed)
{
reboot_now.store(true, std::sync::atomic::Ordering::Relaxed);
}
if reboot_now.load(std::sync::atomic::Ordering::Relaxed) {
println!("Rebooting");
esp_restart();
}
}
}
}
fn main() {
let result = safe_main();
match result {
Ok(_) => {
println!("Main app finished, restarting");
unsafe { esp_restart() };
}
Err(err) => {
println!("Failed main {}", err);
let rollback_successful = rollback_and_reboot();
println!("Failed to rollback :(");
rollback_successful.unwrap();
}
}
}
fn time_to_string_utc(value_option: Option<DateTime<Utc>>) -> String {
let converted = value_option.and_then(|utc| Some(utc.with_timezone(&Berlin)));
return time_to_string(converted);
}
fn time_to_string(value_option: Option<DateTime<Tz>>) -> String {
match value_option {
Some(value) => {
let europe_time = value.with_timezone(&Berlin);
if europe_time.year() > 2023 {
return europe_time.to_rfc3339();
} else {
//initial value of 0 in rtc memory
return "N/A".to_owned();
}
}
None => return "N/A".to_owned(),
};
}
fn sensor_to_string(value: &Option<u8>, error: &Option<SensorError>, enabled: bool) -> String {
if enabled {
match error {
Some(error) => return format!("{:?}", error),
None => match value {
Some(v) => return v.to_string(),
None => return "Error".to_owned(),
},
}
} else {
return "disabled".to_owned();
};
}
fn to_string<T: Display>(value: &Result<T>) -> String {
return match value {
Ok(v) => v.to_string(),
Err(err) => {
format!("{:?}", err)
}
};
}
fn map_range(from_range: (f32, f32), s: f32) -> anyhow::Result<f32> {
if s < from_range.0 {
anyhow::bail!(
"Value out of range, min {} but current is {}",
from_range.0,
s
);
}
if s > from_range.1 {
anyhow::bail!(
"Value out of range, max {} but current is {}",
from_range.1,
s
);
}
return Ok(TO.0 + (s - from_range.0) * (TO.1 - TO.0) / (from_range.1 - from_range.0));
}
fn map_range_moisture(s: f32) -> Result<u8, SensorError> {
if s < FROM.0 {
return Err(SensorError::OpenCircuit { hz: s, min: FROM.0 });
}
if s > FROM.1 {
return Err(SensorError::ShortCircuit { hz: s, max: FROM.1 });
}
let tmp = TO.0 + (s - FROM.0) * (TO.1 - TO.0) / (FROM.1 - FROM.0);
return Ok(tmp as u8);
}
fn in_time_range(cur: &DateTime<Tz>, start: u8, end: u8) -> bool {
let curhour = cur.hour() as u8;
//eg 10-14
if start < end {
return curhour > start && curhour < end;
} else {
//eg 20-05
return curhour > start || curhour < end;
}
}