Compare commits
2 Commits
d2b55fdafb
...
b9bbc4b6e2
Author | SHA1 | Date | |
---|---|---|---|
b9bbc4b6e2 | |||
6fa332e708 |
@ -77,7 +77,7 @@ serde = { version = "1.0.192", features = ["derive"] }
|
||||
serde_json = "1.0.108"
|
||||
|
||||
#timezone
|
||||
chrono = { version = "0.4.23", default-features = false , features = ["iana-time-zone" , "alloc"] }
|
||||
chrono = { version = "0.4.23", default-features = false , features = ["iana-time-zone" , "alloc", "serde"] }
|
||||
chrono-tz = {version="0.8.0", default-features = false , features = [ "filter-by-regex" ]}
|
||||
eeprom24x = "0.7.2"
|
||||
url = "2.5.3"
|
||||
|
@ -3,39 +3,39 @@ use std::process::Command;
|
||||
use vergen::EmitBuilder;
|
||||
fn main() {
|
||||
println!("cargo:rerun-if-changed=./src/src_webpack");
|
||||
Command::new("rm")
|
||||
.arg("./src/webserver/bundle.js")
|
||||
.output()
|
||||
.unwrap();
|
||||
|
||||
match Command::new("cmd").spawn() {
|
||||
Ok(_) => {
|
||||
println!("Assuming build on windows");
|
||||
let output = Command::new("cmd")
|
||||
.arg("/K")
|
||||
.arg("npx")
|
||||
.arg("webpack")
|
||||
.current_dir("./src_webpack")
|
||||
.output()
|
||||
.unwrap();
|
||||
println!("status: {}", output.status);
|
||||
println!("stdout: {}", String::from_utf8_lossy(&output.stdout));
|
||||
println!("stderr: {}", String::from_utf8_lossy(&output.stderr));
|
||||
assert!(output.status.success());
|
||||
Command::new("rm")
|
||||
.arg("./src/webserver/bundle.js")
|
||||
.output()
|
||||
.unwrap();
|
||||
|
||||
match Command::new("cmd").spawn() {
|
||||
Ok(_) => {
|
||||
println!("Assuming build on windows");
|
||||
let output = Command::new("cmd")
|
||||
.arg("/K")
|
||||
.arg("npx")
|
||||
.arg("webpack")
|
||||
.current_dir("./src_webpack")
|
||||
.output()
|
||||
.unwrap();
|
||||
println!("status: {}", output.status);
|
||||
println!("stdout: {}", String::from_utf8_lossy(&output.stdout));
|
||||
println!("stderr: {}", String::from_utf8_lossy(&output.stderr));
|
||||
assert!(output.status.success());
|
||||
}
|
||||
Err(_) => {
|
||||
println!("Assuming build on linux");
|
||||
let output = Command::new("npx")
|
||||
.arg("webpack")
|
||||
.current_dir("./src_webpack")
|
||||
.output()
|
||||
.unwrap();
|
||||
println!("status: {}", output.status);
|
||||
println!("stdout: {}", String::from_utf8_lossy(&output.stdout));
|
||||
println!("stderr: {}", String::from_utf8_lossy(&output.stderr));
|
||||
assert!(output.status.success());
|
||||
}
|
||||
}
|
||||
Err(_) => {
|
||||
println!("Assuming build on linux");
|
||||
let output = Command::new("npx")
|
||||
.arg("webpack")
|
||||
.current_dir("./src_webpack")
|
||||
.output()
|
||||
.unwrap();
|
||||
println!("status: {}", output.status);
|
||||
println!("stdout: {}", String::from_utf8_lossy(&output.stdout));
|
||||
println!("stderr: {}", String::from_utf8_lossy(&output.stderr));
|
||||
assert!(output.status.success());
|
||||
}
|
||||
}
|
||||
|
||||
embuild::espidf::sysenv::output();
|
||||
let _ = EmitBuilder::builder().all_git().all_build().emit();
|
||||
|
@ -2,6 +2,7 @@ use std::str::FromStr;
|
||||
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use crate::plant_state::PlantWateringMode;
|
||||
use crate::PLANT_COUNT;
|
||||
|
||||
#[derive(Serialize, Deserialize, Clone, Debug, PartialEq)]
|
||||
@ -83,8 +84,8 @@ pub struct PlantControllerConfig {
|
||||
#[derive(Serialize, Deserialize, Clone, Debug, PartialEq)]
|
||||
#[serde(default)]
|
||||
pub struct PlantConfig {
|
||||
pub mode: Mode,
|
||||
pub target_moisture: u8,
|
||||
pub mode: PlantWateringMode,
|
||||
pub target_moisture: f32,
|
||||
pub pump_time_s: u16,
|
||||
pub pump_cooldown_min: u16,
|
||||
pub pump_hour_start: u8,
|
||||
@ -96,8 +97,8 @@ pub struct PlantConfig {
|
||||
impl Default for PlantConfig {
|
||||
fn default() -> Self {
|
||||
Self {
|
||||
mode: Mode::OFF,
|
||||
target_moisture: 40,
|
||||
mode: PlantWateringMode::OFF,
|
||||
target_moisture: 40.,
|
||||
pump_time_s: 30,
|
||||
pump_cooldown_min: 60,
|
||||
pump_hour_start: 9,
|
||||
@ -108,11 +109,3 @@ impl Default for PlantConfig {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Serialize, Deserialize, Clone, Debug, PartialEq)]
|
||||
pub enum Mode {
|
||||
OFF,
|
||||
TargetMoisture,
|
||||
TimerOnly,
|
||||
TimerAndDeadzone,
|
||||
}
|
||||
|
352
rust/src/main.rs
352
rust/src/main.rs
@ -7,7 +7,6 @@ use anyhow::{bail, Result};
|
||||
use chrono::{DateTime, Datelike, TimeDelta, Timelike, Utc};
|
||||
use chrono_tz::{Europe::Berlin, Tz};
|
||||
|
||||
use config::Mode;
|
||||
use esp_idf_hal::delay::Delay;
|
||||
use esp_idf_sys::{
|
||||
esp_ota_get_app_partition_count, esp_ota_get_running_partition, esp_ota_get_state_partition,
|
||||
@ -28,8 +27,9 @@ mod log;
|
||||
pub mod plant_hal;
|
||||
mod plant_state;
|
||||
mod tank;
|
||||
pub mod util;
|
||||
|
||||
use plant_state::{PlantInfo, PlantStateMQTT};
|
||||
use plant_state::{PlantInfo, PlantState};
|
||||
use tank::*;
|
||||
|
||||
const TIME_ZONE: Tz = Berlin;
|
||||
@ -406,61 +406,58 @@ fn safe_main() -> anyhow::Result<()> {
|
||||
}
|
||||
};
|
||||
|
||||
let mut plantstate: [PlantInfo; PLANT_COUNT] = core::array::from_fn(|_| PlantInfo {
|
||||
..Default::default()
|
||||
});
|
||||
determine_plant_state(
|
||||
&mut plantstate,
|
||||
timezone_time,
|
||||
&tank_state,
|
||||
&config,
|
||||
&mut board,
|
||||
);
|
||||
let mut plantstate: [PlantState; PLANT_COUNT] =
|
||||
core::array::from_fn(|i| PlantState::read_hardware_state(i, &mut board, &config.plants[i]));
|
||||
|
||||
let pump_required = plantstate.iter().any(|it| it.do_water) && !water_frozen;
|
||||
let pump_required = plantstate
|
||||
.iter()
|
||||
.zip(&config.plants)
|
||||
.any(|(it, conf)| it.needs_to_be_watered(&conf, &timezone_time))
|
||||
&& !water_frozen;
|
||||
if pump_required {
|
||||
log(log::LogMessage::EnableMain, dry_run as u32, 0, "", "");
|
||||
if !dry_run {
|
||||
board.any_pump(true)?;
|
||||
board.any_pump(true)?; // what does this do? Does it need to be reset?
|
||||
}
|
||||
for plant in 0..PLANT_COUNT {
|
||||
let state = &mut plantstate[plant];
|
||||
if state.do_water {
|
||||
let plant_config = &config.plants[plant];
|
||||
state.consecutive_pump_count = board.consecutive_pump_count(plant) + 1;
|
||||
board.store_consecutive_pump_count(plant, state.consecutive_pump_count);
|
||||
if state.consecutive_pump_count > plant_config.max_consecutive_pump_count as u32 {
|
||||
log(
|
||||
log::LogMessage::ConsecutivePumpCountLimit,
|
||||
state.consecutive_pump_count as u32,
|
||||
plant_config.max_consecutive_pump_count as u32,
|
||||
&plant.to_string(),
|
||||
"",
|
||||
);
|
||||
state.not_effective = true;
|
||||
board.fault(plant, true);
|
||||
}
|
||||
for (plant_id, (state, plant_config)) in plantstate.iter().zip(&config.plants).enumerate() {
|
||||
if state.needs_to_be_watered(&plant_config, &timezone_time) {
|
||||
let pump_count = board.consecutive_pump_count(plant_id) + 1;
|
||||
board.store_consecutive_pump_count(plant_id, pump_count);
|
||||
//TODO(judge) where to put this?
|
||||
//if state.consecutive_pump_count > plant_config.max_consecutive_pump_count as u32 {
|
||||
// log(
|
||||
// log::LogMessage::ConsecutivePumpCountLimit,
|
||||
// state.consecutive_pump_count as u32,
|
||||
// plant_config.max_consecutive_pump_count as u32,
|
||||
// &plant.to_string(),
|
||||
// "",
|
||||
// );
|
||||
// state.not_effective = true;
|
||||
// board.fault(plant, true);
|
||||
//}
|
||||
log(
|
||||
log::LogMessage::PumpPlant,
|
||||
(plant + 1) as u32,
|
||||
(plant_id + 1) as u32,
|
||||
plant_config.pump_time_s as u32,
|
||||
&dry_run.to_string(),
|
||||
"",
|
||||
);
|
||||
board.store_last_pump_time(plant, cur);
|
||||
board.last_pump_time(plant);
|
||||
state.active = true;
|
||||
board.store_last_pump_time(plant_id, cur);
|
||||
board.last_pump_time(plant_id);
|
||||
//state.active = true;
|
||||
if !dry_run {
|
||||
board.pump(plant, true)?;
|
||||
for _ in 0..plant_config.pump_time_s {
|
||||
Delay::new_default().delay_ms(1000);
|
||||
}
|
||||
board.pump(plant, false)?;
|
||||
board.pump(plant_id, true)?;
|
||||
Delay::new_default().delay_ms(1000*plant_config.pump_time_s as u32);
|
||||
board.pump(plant_id, false)?;
|
||||
}
|
||||
} else if !state.pump_in_timeout(&plant_config, &timezone_time){
|
||||
// plant does not need to be watered and is not in timeout
|
||||
// -> reset consecutive pump count
|
||||
board.store_consecutive_pump_count(plant_id, 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
update_plant_state(&mut plantstate, &mut board, &config);
|
||||
//update_plant_state(&mut plantstate, &mut board, &config);
|
||||
|
||||
let is_day = board.is_day();
|
||||
let state_of_charge = board.state_charge_percent().unwrap_or(0);
|
||||
@ -568,279 +565,6 @@ fn publish_battery_state(
|
||||
};
|
||||
}
|
||||
|
||||
fn determine_state_target_moisture_for_plant(
|
||||
board: &mut std::sync::MutexGuard<'_, PlantCtrlBoard<'_>>,
|
||||
plant: usize,
|
||||
state: &mut PlantInfo,
|
||||
config: &PlantControllerConfig,
|
||||
tank_state: &TankState,
|
||||
cur: DateTime<Tz>,
|
||||
) {
|
||||
let plant_config = &config.plants[plant];
|
||||
if plant_config.mode == Mode::OFF {
|
||||
return;
|
||||
}
|
||||
match board.measure_moisture_hz(plant, plant_hal::Sensor::A) {
|
||||
Ok(a) => {
|
||||
state.a_raw = Some(a);
|
||||
let mapped = map_range_moisture(a as f32);
|
||||
match mapped {
|
||||
Ok(result) => state.a = Some(result),
|
||||
Err(err) => {
|
||||
state.sensor_error_a = Some(err);
|
||||
}
|
||||
}
|
||||
}
|
||||
Err(_) => {
|
||||
state.sensor_error_a = Some(SensorError::Unknown);
|
||||
}
|
||||
}
|
||||
if plant_config.sensor_b {
|
||||
match board.measure_moisture_hz(plant, plant_hal::Sensor::B) {
|
||||
Ok(b) => {
|
||||
state.b_raw = Some(b);
|
||||
let mapped = map_range_moisture(b as f32);
|
||||
match mapped {
|
||||
Ok(result) => state.b = Some(result),
|
||||
Err(err) => {
|
||||
state.sensor_error_b = Some(err);
|
||||
}
|
||||
}
|
||||
}
|
||||
Err(_) => {
|
||||
state.sensor_error_b = Some(SensorError::Unknown);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//FIXME how to average analyze whatever?
|
||||
let a_low = state.a.is_some() && state.a.unwrap() < plant_config.target_moisture;
|
||||
let b_low = state.b.is_some() && state.b.unwrap() < plant_config.target_moisture;
|
||||
|
||||
if a_low || b_low {
|
||||
state.dry = true;
|
||||
match tank_state.enough_water(&config.tank) {
|
||||
Err(_tank_err) => {
|
||||
if !config.tank.tank_allow_pumping_if_sensor_error {
|
||||
state.no_water = true;
|
||||
}
|
||||
}
|
||||
// when no tank error, if plant should be watered depends on if enough water is in tank
|
||||
// no_water behaves inversly to enough_water
|
||||
Ok(enough_water) => state.no_water = !enough_water,
|
||||
}
|
||||
}
|
||||
let duration = TimeDelta::try_minutes(plant_config.pump_cooldown_min as i64).unwrap();
|
||||
let last_pump = board.last_pump_time(plant);
|
||||
match last_pump {
|
||||
Some(last_pump) => {
|
||||
let next_pump = last_pump + duration;
|
||||
if next_pump > cur {
|
||||
let local_time = next_pump.with_timezone(&TIME_ZONE);
|
||||
state.next_pump = Some(local_time);
|
||||
state.cooldown = true;
|
||||
}
|
||||
}
|
||||
None => {
|
||||
println!(
|
||||
"Could not restore last pump for plant {}, restoring",
|
||||
plant + 1
|
||||
);
|
||||
board.store_last_pump_time(plant, DateTime::from_timestamp_millis(0).unwrap());
|
||||
state.pump_error = true;
|
||||
}
|
||||
}
|
||||
|
||||
if !in_time_range(
|
||||
&cur,
|
||||
plant_config.pump_hour_start,
|
||||
plant_config.pump_hour_end,
|
||||
) {
|
||||
state.out_of_work_hour = true;
|
||||
}
|
||||
if state.dry && !state.no_water && !state.cooldown && !state.out_of_work_hour {
|
||||
state.do_water = true;
|
||||
}
|
||||
}
|
||||
|
||||
fn determine_state_timer_only_for_plant(
|
||||
board: &mut std::sync::MutexGuard<'_, PlantCtrlBoard<'_>>,
|
||||
plant: usize,
|
||||
state: &mut PlantInfo,
|
||||
config: &PlantControllerConfig,
|
||||
tank_state: &TankState,
|
||||
cur: DateTime<Tz>,
|
||||
) {
|
||||
let plant_config = &config.plants[plant];
|
||||
let duration = TimeDelta::try_minutes(plant_config.pump_cooldown_min as i64).unwrap();
|
||||
|
||||
let last_pump = board.last_pump_time(plant);
|
||||
match last_pump {
|
||||
Some(last_pump) => {
|
||||
let next_pump = last_pump + duration;
|
||||
if next_pump > cur {
|
||||
let europe_time = next_pump.with_timezone(&TIME_ZONE);
|
||||
state.next_pump = Some(europe_time);
|
||||
state.cooldown = true;
|
||||
} else {
|
||||
match tank_state.enough_water(&config.tank) {
|
||||
Err(_tank_err) => {
|
||||
if !config.tank.tank_allow_pumping_if_sensor_error {
|
||||
state.do_water = true;
|
||||
}
|
||||
}
|
||||
Ok(enough_water) => {
|
||||
state.no_water = !enough_water;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
None => {
|
||||
println!(
|
||||
"Could not restore last pump for plant {}, restoring",
|
||||
plant + 1
|
||||
);
|
||||
board.store_last_pump_time(plant, DateTime::from_timestamp_millis(0).unwrap());
|
||||
state.pump_error = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn determine_state_timer_and_deadzone_for_plant(
|
||||
board: &mut std::sync::MutexGuard<'_, PlantCtrlBoard<'_>>,
|
||||
plant: usize,
|
||||
state: &mut PlantInfo,
|
||||
config: &PlantControllerConfig,
|
||||
tank_state: &TankState,
|
||||
cur: DateTime<Tz>,
|
||||
) {
|
||||
let plant_config = &config.plants[plant];
|
||||
let duration = TimeDelta::try_minutes(plant_config.pump_cooldown_min as i64).unwrap();
|
||||
|
||||
let last_pump = board.last_pump_time(plant);
|
||||
match last_pump {
|
||||
Some(last_pump) => {
|
||||
let next_pump = last_pump + duration;
|
||||
if next_pump > cur {
|
||||
let europe_time = next_pump.with_timezone(&TIME_ZONE);
|
||||
state.next_pump = Some(europe_time);
|
||||
state.cooldown = true;
|
||||
}
|
||||
if !in_time_range(
|
||||
&cur,
|
||||
plant_config.pump_hour_start,
|
||||
plant_config.pump_hour_end,
|
||||
) {
|
||||
state.out_of_work_hour = true;
|
||||
}
|
||||
if !state.cooldown && !state.out_of_work_hour {
|
||||
match tank_state.enough_water(&config.tank) {
|
||||
Err(_tank_err) => {
|
||||
if !config.tank.tank_allow_pumping_if_sensor_error {
|
||||
state.do_water = true;
|
||||
}
|
||||
}
|
||||
Ok(enough_water) => {
|
||||
state.no_water = !enough_water;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
None => {
|
||||
println!(
|
||||
"Could not restore last pump for plant {}, restoring",
|
||||
plant + 1
|
||||
);
|
||||
board.store_last_pump_time(plant, DateTime::from_timestamp_millis(0).unwrap());
|
||||
state.pump_error = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn determine_plant_state(
|
||||
plantstate: &mut [PlantInfo; PLANT_COUNT],
|
||||
cur: DateTime<Tz>,
|
||||
tank_state: &TankState,
|
||||
config: &PlantControllerConfig,
|
||||
board: &mut std::sync::MutexGuard<'_, PlantCtrlBoard<'_>>,
|
||||
) {
|
||||
for plant in 0..PLANT_COUNT {
|
||||
let state = &mut plantstate[plant];
|
||||
let plant_config = &config.plants[plant];
|
||||
match plant_config.mode {
|
||||
config::Mode::OFF => {}
|
||||
config::Mode::TargetMoisture => {
|
||||
determine_state_target_moisture_for_plant(
|
||||
board, plant, state, config, tank_state, cur,
|
||||
);
|
||||
}
|
||||
config::Mode::TimerOnly => {
|
||||
determine_state_timer_only_for_plant(board, plant, state, config, tank_state, cur);
|
||||
}
|
||||
config::Mode::TimerAndDeadzone => {
|
||||
determine_state_timer_and_deadzone_for_plant(
|
||||
board, plant, state, config, tank_state, cur,
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
if state.sensor_error_a.is_some() || state.sensor_error_b.is_some() {
|
||||
board.fault(plant, true);
|
||||
}
|
||||
if !state.dry {
|
||||
state.consecutive_pump_count = 0;
|
||||
board.store_consecutive_pump_count(plant, 0);
|
||||
}
|
||||
println!("Plant {} state is {:?}", plant, state);
|
||||
}
|
||||
}
|
||||
|
||||
fn update_plant_state(
|
||||
plantstate: &mut [PlantInfo; PLANT_COUNT],
|
||||
board: &mut std::sync::MutexGuard<'_, PlantCtrlBoard<'_>>,
|
||||
config: &PlantControllerConfig,
|
||||
) {
|
||||
for plant in 0..PLANT_COUNT {
|
||||
let state = &plantstate[plant];
|
||||
let plant_config = &config.plants[plant];
|
||||
|
||||
let mode = format!("{:?}", plant_config.mode);
|
||||
|
||||
let plant_dto = PlantStateMQTT {
|
||||
a: &sensor_to_string(
|
||||
&state.a,
|
||||
&state.sensor_error_a,
|
||||
plant_config.mode != Mode::OFF,
|
||||
),
|
||||
a_raw: &state.a_raw.unwrap_or(0).to_string(),
|
||||
b: &sensor_to_string(&state.b, &state.sensor_error_b, plant_config.sensor_b),
|
||||
b_raw: &state.b_raw.unwrap_or(0).to_string(),
|
||||
active: state.active,
|
||||
mode: &mode,
|
||||
last_pump: &time_to_string_utc(board.last_pump_time(plant)),
|
||||
next_pump: &time_to_string(state.next_pump),
|
||||
consecutive_pump_count: state.consecutive_pump_count,
|
||||
cooldown: state.cooldown,
|
||||
dry: state.dry,
|
||||
not_effective: state.not_effective,
|
||||
out_of_work_hour: state.out_of_work_hour,
|
||||
pump_error: state.pump_error,
|
||||
};
|
||||
|
||||
match serde_json::to_string(&plant_dto) {
|
||||
Ok(state) => {
|
||||
let plant_topic = format!("/plant{}", plant + 1);
|
||||
let _ = board.mqtt_publish(&config, &plant_topic, state.as_bytes());
|
||||
//reduce speed as else messages will be dropped
|
||||
Delay::new_default().delay_ms(200);
|
||||
}
|
||||
Err(err) => {
|
||||
println!("Error publishing lightstate {}", err);
|
||||
}
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
fn wait_infinity(wait_type: WaitType, reboot_now: Arc<AtomicBool>) -> ! {
|
||||
let delay = wait_type.blink_pattern();
|
||||
|
||||
|
@ -603,7 +603,7 @@ impl PlantCtrlBoard<'_> {
|
||||
self.time()
|
||||
}
|
||||
|
||||
pub fn measure_moisture_hz(&mut self, plant: usize, sensor: Sensor) -> Result<u32> {
|
||||
pub fn measure_moisture_hz(&mut self, plant: usize, sensor: Sensor) -> Result<f32> {
|
||||
let sensor_channel = match sensor {
|
||||
Sensor::A => match plant {
|
||||
0 => SENSOR_A_1,
|
||||
@ -629,7 +629,7 @@ impl PlantCtrlBoard<'_> {
|
||||
},
|
||||
};
|
||||
|
||||
let mut results = [0_u32; REPEAT_MOIST_MEASURE];
|
||||
let mut results = [0_f32; REPEAT_MOIST_MEASURE];
|
||||
for repeat in 0..REPEAT_MOIST_MEASURE {
|
||||
self.signal_counter.counter_pause()?;
|
||||
self.signal_counter.counter_clear()?;
|
||||
@ -644,7 +644,7 @@ impl PlantCtrlBoard<'_> {
|
||||
.unwrap();
|
||||
|
||||
let delay = Delay::new_default();
|
||||
let measurement = 100;
|
||||
let measurement = 100; // TODO what is this scaling factor? what is its purpose?
|
||||
let factor = 1000 as f32 / measurement as f32;
|
||||
|
||||
//give some time to stabilize
|
||||
@ -658,7 +658,7 @@ impl PlantCtrlBoard<'_> {
|
||||
.unwrap();
|
||||
delay.delay_ms(10);
|
||||
let unscaled = self.signal_counter.get_counter_value()? as i32;
|
||||
let hz = (unscaled as f32 * factor) as u32;
|
||||
let hz = unscaled as f32 * factor;
|
||||
log(
|
||||
LogMessage::RawMeasure,
|
||||
unscaled as u32,
|
||||
@ -668,7 +668,7 @@ impl PlantCtrlBoard<'_> {
|
||||
);
|
||||
results[repeat] = hz;
|
||||
}
|
||||
results.sort();
|
||||
results.sort_by(|a,b| a.partial_cmp(b).unwrap()); // floats don't seem to implement total_ord
|
||||
|
||||
let mid = results.len() / 2;
|
||||
|
||||
|
@ -1,68 +1,112 @@
|
||||
use chrono::{DateTime, Utc};
|
||||
use chrono::{DateTime, TimeDelta, Utc};
|
||||
use chrono_tz::Tz;
|
||||
use serde::Serialize;
|
||||
use measurements::humidity;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use crate::{config, plant_hal};
|
||||
use crate::{
|
||||
config::{self, PlantConfig},
|
||||
plant_hal::{self, PLANT_COUNT},
|
||||
};
|
||||
|
||||
const MOIST_SENSOR_MAX_FREQUENCY: u32 = 5500; // 60kHz (500Hz margin)
|
||||
const MOIST_SENSOR_MIN_FREQUENCY: u32 = 150; // this is really really dry, think like cactus levels
|
||||
const MOIST_SENSOR_MAX_FREQUENCY: f32 = 5500.; // 60kHz (500Hz margin)
|
||||
const MOIST_SENSOR_MIN_FREQUENCY: f32 = 150.; // this is really really dry, think like cactus levels
|
||||
|
||||
pub enum HumiditySensorError{
|
||||
ShortCircuit{hz: f32, max: f32},
|
||||
OpenLoop{hz: f32, min: f32}
|
||||
#[derive(Debug, PartialEq, Serialize)]
|
||||
pub enum HumiditySensorError {
|
||||
ShortCircuit { hz: f32, max: f32 },
|
||||
OpenLoop { hz: f32, min: f32 },
|
||||
}
|
||||
|
||||
#[derive(Debug, PartialEq, Serialize)]
|
||||
pub enum HumiditySensorState {
|
||||
Disabled,
|
||||
HumidityValue{raw_hz: u32, moisture_percent: f32},
|
||||
HumidityValue { raw_hz: f32, moisture_percent: f32 },
|
||||
SensorError(HumiditySensorError),
|
||||
BoardError(String)
|
||||
BoardError(String),
|
||||
}
|
||||
|
||||
impl HumiditySensorState {
|
||||
pub fn is_err(&self) -> bool {
|
||||
matches!(self, Self::SensorError(_)) || matches!(self, Self::BoardError(_))
|
||||
}
|
||||
|
||||
pub fn moisture_percent(&self) -> Option<f32> {
|
||||
if let HumiditySensorState::HumidityValue {
|
||||
raw_hz,
|
||||
moisture_percent,
|
||||
} = self
|
||||
{
|
||||
Some(*moisture_percent)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub enum PumpError {}
|
||||
impl HumiditySensorState {}
|
||||
|
||||
#[derive(Debug, PartialEq, Serialize)]
|
||||
pub enum PumpError {
|
||||
PumpNotWorking {
|
||||
failed_attempts: usize,
|
||||
max_allowed_failures: usize,
|
||||
},
|
||||
}
|
||||
|
||||
#[derive(Debug, Serialize)]
|
||||
pub struct PumpState {
|
||||
consecutive_pump_count: u32,
|
||||
previous_pump: Option<DateTime<Utc>>
|
||||
previous_pump: Option<DateTime<Utc>>,
|
||||
}
|
||||
|
||||
pub enum PlantError{}
|
||||
#[derive(Serialize, Deserialize, Clone, Debug, PartialEq)]
|
||||
pub enum PlantWateringMode {
|
||||
OFF,
|
||||
TargetMoisture,
|
||||
TimerOnly,
|
||||
}
|
||||
|
||||
pub enum PlantError {}
|
||||
|
||||
pub struct PlantState {
|
||||
sensor_a: HumiditySensorState,
|
||||
sensor_b: HumiditySensorState,
|
||||
pump: PumpState,
|
||||
pub sensor_a: HumiditySensorState,
|
||||
pub sensor_b: HumiditySensorState,
|
||||
pub pump: PumpState,
|
||||
}
|
||||
|
||||
fn map_range_moisture(s: f32) -> Result<f32, HumiditySensorError> {
|
||||
if s < MOIST_SENSOR_MIN_FREQUENCY {
|
||||
return Err(HumiditySensorError::OpenCircuit { hz: s, min: FROM.0 });
|
||||
return Err(HumiditySensorError::OpenLoop {
|
||||
hz: s,
|
||||
min: MOIST_SENSOR_MIN_FREQUENCY,
|
||||
});
|
||||
}
|
||||
if s > MOIST_SENSOR_MAX_FREQUENCY {
|
||||
return Err(HumiditySensorError::ShortCircuit { hz: s, max: FROM.1 });
|
||||
return Err(HumiditySensorError::ShortCircuit {
|
||||
hz: s,
|
||||
max: MOIST_SENSOR_MAX_FREQUENCY,
|
||||
});
|
||||
}
|
||||
let moisture_percent = (s - MOIST_SENSOR_MIN_FREQUENCY) * 100 / (MOIST_SENSOR_MAX_FREQUENCY - MOIST_SENSOR_MIN_FREQUENCY);
|
||||
let moisture_percent = (s - MOIST_SENSOR_MIN_FREQUENCY) * 100.0
|
||||
/ (MOIST_SENSOR_MAX_FREQUENCY - MOIST_SENSOR_MIN_FREQUENCY);
|
||||
|
||||
return Ok(moisture_percent);
|
||||
}
|
||||
|
||||
|
||||
impl PlantState {
|
||||
pub fn read_hardware_state(
|
||||
plant_id: usize,
|
||||
board: &mut plant_hal::PlantCtrlBoard,
|
||||
config: &config::PlantConfig
|
||||
config: &config::PlantConfig,
|
||||
) -> Self {
|
||||
let sensor_a = if config.sensor_a {
|
||||
match board.measure_moisture_hz(plant_id, plant_hal::Sensor::A) {
|
||||
Ok(raw) => {
|
||||
match map_range_moisture(raw) {
|
||||
Ok(moisture_percent) => HumiditySensorState::HumidityValue { raw_hz: raw, moisture_percent },
|
||||
Err(err) => HumiditySensorState::SensorError(err),
|
||||
}
|
||||
Ok(raw) => match map_range_moisture(raw) {
|
||||
Ok(moisture_percent) => HumiditySensorState::HumidityValue {
|
||||
raw_hz: raw,
|
||||
moisture_percent,
|
||||
},
|
||||
Err(err) => HumiditySensorState::SensorError(err),
|
||||
},
|
||||
Err(err) => HumiditySensorState::BoardError(err.to_string()),
|
||||
}
|
||||
@ -71,11 +115,12 @@ impl PlantState {
|
||||
};
|
||||
let sensor_b = if config.sensor_b {
|
||||
match board.measure_moisture_hz(plant_id, plant_hal::Sensor::B) {
|
||||
Ok(raw) => {
|
||||
match map_range_moisture(raw) {
|
||||
Ok(moisture_percent) => HumiditySensorState::HumidityValue { raw_hz: raw, moisture_percent },
|
||||
Err(err) => HumiditySensorState::SensorError(err),
|
||||
}
|
||||
Ok(raw) => match map_range_moisture(raw) {
|
||||
Ok(moisture_percent) => HumiditySensorState::HumidityValue {
|
||||
raw_hz: raw,
|
||||
moisture_percent,
|
||||
},
|
||||
Err(err) => HumiditySensorState::SensorError(err),
|
||||
},
|
||||
Err(err) => HumiditySensorState::BoardError(err.to_string()),
|
||||
}
|
||||
@ -84,45 +129,145 @@ impl PlantState {
|
||||
};
|
||||
let previous_pump = board.last_pump_time(plant_id);
|
||||
let consecutive_pump_count = board.consecutive_pump_count(plant_id);
|
||||
Self {
|
||||
let state = Self {
|
||||
sensor_a,
|
||||
sensor_b,
|
||||
pump: PumpState { consecutive_pump_count , previous_pump}
|
||||
pump: PumpState {
|
||||
consecutive_pump_count,
|
||||
previous_pump,
|
||||
},
|
||||
};
|
||||
if state.is_err() {
|
||||
board.fault(plant_id, true);
|
||||
}
|
||||
state
|
||||
}
|
||||
|
||||
pub fn pump_in_timeout(&self, plant_conf: &PlantConfig, current_time: &DateTime<Tz>) -> bool {
|
||||
self.pump.previous_pump.is_some_and(|last_pump| {
|
||||
last_pump
|
||||
.checked_add_signed(TimeDelta::minutes(plant_conf.pump_cooldown_min.into()))
|
||||
.is_some_and(|earliest_next_allowed_pump| {
|
||||
earliest_next_allowed_pump > *current_time
|
||||
})
|
||||
})
|
||||
}
|
||||
|
||||
pub fn is_err(&self) -> bool {
|
||||
self.sensor_a.is_err() || self.sensor_b.is_err()
|
||||
}
|
||||
|
||||
pub fn needs_to_be_watered(
|
||||
&self,
|
||||
plant_conf: &PlantConfig,
|
||||
current_time: &DateTime<Tz>,
|
||||
) -> bool {
|
||||
match plant_conf.mode {
|
||||
PlantWateringMode::OFF => false,
|
||||
PlantWateringMode::TargetMoisture => {
|
||||
let moisture_percent = match (
|
||||
self.sensor_a.moisture_percent(),
|
||||
self.sensor_b.moisture_percent(),
|
||||
) {
|
||||
(Some(moisture_a), Some(moisture_b)) => (moisture_a + moisture_b) / 2.,
|
||||
(Some(moisture_percent), _) => moisture_percent,
|
||||
(_, Some(moisture_percent)) => moisture_percent,
|
||||
_ => {
|
||||
// Case for both sensors hitting an error do not water plant in this case
|
||||
return false;
|
||||
}
|
||||
};
|
||||
if self.pump_in_timeout(plant_conf, current_time) {
|
||||
false
|
||||
} else {
|
||||
if moisture_percent < plant_conf.target_moisture {
|
||||
true
|
||||
} else {
|
||||
false
|
||||
}
|
||||
}
|
||||
}
|
||||
PlantWateringMode::TimerOnly => {
|
||||
if self.pump_in_timeout(plant_conf, current_time) {
|
||||
false
|
||||
} else {
|
||||
true
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, PartialEq, Default, Serialize)]
|
||||
//fn update_plant_state(
|
||||
// plantstate: &mut [PlantInfo; PLANT_COUNT],
|
||||
// board: &mut std::sync::MutexGuard<'_, PlantCtrlBoard<'_>>,
|
||||
// config: &PlantControllerConfig,
|
||||
//) {
|
||||
// for plant in 0..PLANT_COUNT {
|
||||
// let state = &plantstate[plant];
|
||||
// let plant_config = &config.plants[plant];
|
||||
//
|
||||
// let mode = format!("{:?}", plant_config.mode);
|
||||
//
|
||||
// let plant_dto = PlantStateMQTT {
|
||||
// a: &sensor_to_string(
|
||||
// &state.a,
|
||||
// &state.sensor_error_a,
|
||||
// plant_config.mode != PlantWateringMode::OFF,
|
||||
// ),
|
||||
// a_raw: &state.a_raw.unwrap_or(0).to_string(),
|
||||
// b: &sensor_to_string(&state.b, &state.sensor_error_b, plant_config.sensor_b),
|
||||
// b_raw: &state.b_raw.unwrap_or(0).to_string(),
|
||||
// active: state.active,
|
||||
// mode: &mode,
|
||||
// last_pump: &time_to_string_utc(board.last_pump_time(plant)),
|
||||
// next_pump: &time_to_string(state.next_pump),
|
||||
// consecutive_pump_count: state.consecutive_pump_count,
|
||||
// cooldown: state.cooldown,
|
||||
// dry: state.dry,
|
||||
// not_effective: state.not_effective,
|
||||
// out_of_work_hour: state.out_of_work_hour,
|
||||
// pump_error: state.pump_error,
|
||||
// };
|
||||
//
|
||||
// match serde_json::to_string(&plant_dto) {
|
||||
// Ok(state) => {
|
||||
// let plant_topic = format!("/plant{}", plant + 1);
|
||||
// let _ = board.mqtt_publish(&config, &plant_topic, state.as_bytes());
|
||||
// //reduce speed as else messages will be dropped
|
||||
// Delay::new_default().delay_ms(200);
|
||||
// }
|
||||
// Err(err) => {
|
||||
// println!("Error publishing lightstate {}", err);
|
||||
// }
|
||||
// };
|
||||
// }
|
||||
//}
|
||||
|
||||
#[derive(Debug, PartialEq, Serialize)]
|
||||
/// State of a single plant to be tracked
|
||||
pub struct PlantInfo {
|
||||
/// state of humidity sensor on bank a
|
||||
a: HumiditySensorState,
|
||||
/// raw measured frequency value for sensor on bank a in hertz
|
||||
a_raw: Option<u32>,
|
||||
sensor_a: HumiditySensorState,
|
||||
/// state of humidity sensor on bank b
|
||||
b: HumiditySensorState,
|
||||
/// raw measured frequency value for sensor on bank b in hertz
|
||||
b_raw: Option<u32>,
|
||||
sensor_b: HumiditySensorState,
|
||||
/// configured plant watering mode
|
||||
mode: config::Mode,
|
||||
/// how often has the logic determined that plant should have been irrigated but wasn't
|
||||
consecutive_pump_count: u32,
|
||||
mode: PlantWateringMode,
|
||||
/// plant needs to be watered
|
||||
do_water: bool,
|
||||
/// is plant considerd to be dry according to settings
|
||||
dry: bool,
|
||||
/// is pump currently running
|
||||
active: bool,
|
||||
/// TODO: convert this to an Option<PumpErorr> enum for every case that can happen
|
||||
pump_error: bool,
|
||||
/// if pump count has increased higher than configured limit
|
||||
not_effective: bool,
|
||||
/// plant irrigation cooldown is active
|
||||
cooldown: bool,
|
||||
/// we want to irrigate but tank is empty
|
||||
no_water: bool,
|
||||
/// pump should not be watered at this time of day
|
||||
/// plant should not be watered at this time of day TODO: does this really belong here? Isn't this a global setting?
|
||||
out_of_work_hour: bool,
|
||||
/// is pump currently running
|
||||
active: bool,
|
||||
/// how often has the logic determined that plant should have been irrigated but wasn't
|
||||
consecutive_pump_count: u32,
|
||||
pump_error: Option<PumpError>,
|
||||
/// last time when pump was active
|
||||
last_pump: Option<DateTime<Tz>>,
|
||||
/// next time when pump should activate
|
||||
|
10
rust/src/util.rs
Normal file
10
rust/src/util.rs
Normal file
@ -0,0 +1,10 @@
|
||||
|
||||
pub trait LimitPrecision {
|
||||
fn to_precision(self, presision: i32) -> Self;
|
||||
}
|
||||
|
||||
impl LimitPrecision for f32 {
|
||||
fn to_precision(self, precision: i32) -> Self {
|
||||
(self * (10_f32).powi(precision)).round() / (10_f32).powi(precision)
|
||||
}
|
||||
}
|
@ -1,8 +1,8 @@
|
||||
//offer ota and config mode
|
||||
|
||||
use crate::{
|
||||
determine_tank_state, get_version, log::LogMessage, map_range_moisture, plant_hal::PLANT_COUNT,
|
||||
BOARD_ACCESS,
|
||||
determine_tank_state, get_version, log::LogMessage, plant_hal::PLANT_COUNT,
|
||||
plant_state::PlantState, util::LimitPrecision, BOARD_ACCESS,
|
||||
};
|
||||
use anyhow::bail;
|
||||
use chrono::DateTime;
|
||||
@ -35,8 +35,8 @@ struct LoadData<'a> {
|
||||
|
||||
#[derive(Serialize, Debug)]
|
||||
struct Moistures {
|
||||
moisture_a: Vec<u8>,
|
||||
moisture_b: Vec<u8>,
|
||||
moisture_a: Vec<Option<f32>>,
|
||||
moisture_b: Vec<Option<f32>>,
|
||||
}
|
||||
|
||||
#[derive(Deserialize, Debug)]
|
||||
@ -81,33 +81,21 @@ fn get_live_moisture(
|
||||
_request: &mut Request<&mut EspHttpConnection>,
|
||||
) -> Result<Option<std::string::String>, anyhow::Error> {
|
||||
let mut board = BOARD_ACCESS.lock().unwrap();
|
||||
let config = board.get_config().unwrap();
|
||||
|
||||
let mut a: Vec<u8> = Vec::new();
|
||||
let mut b: Vec<u8> = Vec::new();
|
||||
for plant in 0..8 {
|
||||
let a_hz = board.measure_moisture_hz(plant, crate::plant_hal::Sensor::A)?;
|
||||
let b_hz = board.measure_moisture_hz(plant, crate::plant_hal::Sensor::B)?;
|
||||
let a_pct = map_range_moisture(a_hz as f32);
|
||||
|
||||
match a_pct {
|
||||
Ok(result) => {
|
||||
a.push(result);
|
||||
}
|
||||
Err(_) => {
|
||||
a.push(200);
|
||||
}
|
||||
}
|
||||
|
||||
let b_pct = map_range_moisture(b_hz as f32);
|
||||
match b_pct {
|
||||
Ok(result) => {
|
||||
b.push(result);
|
||||
}
|
||||
Err(_) => {
|
||||
b.push(200);
|
||||
}
|
||||
}
|
||||
}
|
||||
let plant_state = Vec::from_iter(
|
||||
(0..PLANT_COUNT).map(|i| PlantState::read_hardware_state(i, &mut board, &config.plants[i])),
|
||||
);
|
||||
let a = Vec::from_iter(
|
||||
plant_state
|
||||
.iter()
|
||||
.map(|s| s.sensor_a.moisture_percent().map(|f| f.to_precision(2))),
|
||||
);
|
||||
let b = Vec::from_iter(
|
||||
plant_state
|
||||
.iter()
|
||||
.map(|s| s.sensor_b.moisture_percent().map(|f| f.to_precision(2))),
|
||||
);
|
||||
|
||||
let data = Moistures {
|
||||
moisture_a: a,
|
||||
|
Loading…
x
Reference in New Issue
Block a user