splitting wip

This commit is contained in:
2025-06-19 16:56:33 +02:00
parent c429c829b4
commit fc1991523a
9 changed files with 1553 additions and 1675 deletions

530
rust/src/hal/v4_hal.rs Normal file
View File

@@ -0,0 +1,530 @@
use anyhow::{anyhow, bail};
use chrono::{DateTime, Utc};
use ds18b20::Ds18b20;
use ds323x::{DateTimeAccess, Ds323x};
use eeprom24x::{Eeprom24x, Eeprom24xTrait, SlaveAddr};
use embedded_hal::digital::OutputPin;
use embedded_hal_bus::i2c::MutexDevice;
use esp_idf_hal::adc::oneshot::{AdcChannelDriver, AdcDriver};
use esp_idf_hal::delay::Delay;
use esp_idf_hal::gpio::{AnyInputPin, Gpio5, IOPin, InputOutput, Output, PinDriver, Pull};
use esp_idf_hal::i2c::I2cDriver;
use esp_idf_hal::pcnt::{PcntChannel, PcntChannelConfig, PcntControlMode, PcntCountMode, PcntDriver, PinIndex};
use esp_idf_sys::{gpio_hold_dis, gpio_hold_en, vTaskDelay, EspError};
use one_wire_bus::OneWire;
use pca9535::{GPIOBank, Pca9535Immediate, StandardExpanderInterface};
use crate::hal::{deep_sleep, BackupHeader, BoardInteraction, FreePeripherals, Sensor, I2C_DRIVER, PLANT_COUNT, REPEAT_MOIST_MEASURE, TANK_MULTI_SAMPLE, X25};
use crate::hal::esp::ESP;
use std::result::Result::Ok as OkStd;
use esp_idf_hal::adc::{attenuation, Resolution};
use esp_idf_hal::adc::oneshot::config::AdcChannelConfig;
use crate::config::PlantControllerConfig;
use crate::hal::battery::{BatteryInteraction, BatteryMonitor};
use crate::log::{log, LogMessage};
const MS0: u8 = 1_u8;
const MS1: u8 = 0_u8;
const MS2: u8 = 3_u8;
const MS3: u8 = 4_u8;
const MS4: u8 = 2_u8;
const SENSOR_ON: u8 = 5_u8;
pub struct V4<'a> {
esp: ESP<'a>,
battery_monitor: Box<dyn BatteryInteraction>,
config: PlantControllerConfig,
tank_channel: AdcChannelDriver<'a, Gpio5, AdcDriver<'a, esp_idf_hal::adc::ADC1>>,
solar_is_day: PinDriver<'a, esp_idf_hal::gpio::AnyIOPin, esp_idf_hal::gpio::Input>,
signal_counter: PcntDriver<'a>,
charge_indicator: PinDriver<'a, esp_idf_hal::gpio::AnyIOPin, InputOutput>,
awake: PinDriver<'a, esp_idf_hal::gpio::AnyIOPin, Output>,
light: PinDriver<'a, esp_idf_hal::gpio::AnyIOPin, InputOutput>,
tank_power: PinDriver<'a, esp_idf_hal::gpio::AnyIOPin, InputOutput>,
one_wire_bus: OneWire<PinDriver<'a, esp_idf_hal::gpio::AnyIOPin, InputOutput>>,
rtc:
Ds323x<ds323x::interface::I2cInterface<MutexDevice<'a, I2cDriver<'a>>>, ds323x::ic::DS3231>,
eeprom: Eeprom24x<
MutexDevice<'a, I2cDriver<'a>>,
eeprom24x::page_size::B32,
eeprom24x::addr_size::TwoBytes,
eeprom24x::unique_serial::No,
>,
general_fault: PinDriver<'a, esp_idf_hal::gpio::AnyIOPin, InputOutput>,
pump_expander: Pca9535Immediate<MutexDevice<'a, I2cDriver<'a>>>,
sensor_expander: Pca9535Immediate<MutexDevice<'a, I2cDriver<'a>>>,
}
pub(crate) fn create_v4(peripherals: FreePeripherals, esp:ESP, config:PlantControllerConfig, battery_monitor: Box<dyn BatteryInteraction>) -> anyhow::Result<Box<dyn BoardInteraction + '_>> {
let mut awake = PinDriver::output(peripherals.gpio15.downgrade())?;
awake.set_high()?;
let mut general_fault = PinDriver::input_output(peripherals.gpio6.downgrade())?;
general_fault.set_pull(Pull::Floating)?;
general_fault.set_low()?;
println!("Init rtc driver");
let mut rtc = Ds323x::new_ds3231(MutexDevice::new(&I2C_DRIVER));
println!("Init rtc eeprom driver");
let mut eeprom = {
Eeprom24x::new_24x32(
MutexDevice::new(&I2C_DRIVER),
SlaveAddr::Alternative(true, true, true),
)
};
let mut one_wire_pin = PinDriver::input_output_od(peripherals.gpio18.downgrade())?;
one_wire_pin.set_pull(Pull::Floating)?;
let one_wire_bus = OneWire::new(one_wire_pin)
.map_err(|err| -> anyhow::Error { anyhow!("Missing attribute: {:?}", err) })?;
let rtc_time = rtc.datetime();
match rtc_time {
OkStd(tt) => {
println!("Rtc Module reports time at UTC {}", tt);
}
Err(err) => {
println!("Rtc Module could not be read {:?}", err);
}
}
match eeprom.read_byte(0) {
OkStd(byte) => {
println!("Read first byte with status {}", byte);
}
Err(err) => {
println!("Eeprom could not read first byte {:?}", err);
}
}
let mut signal_counter = PcntDriver::new(
peripherals.pcnt0,
Some(peripherals.gpio22),
Option::<AnyInputPin>::None,
Option::<AnyInputPin>::None,
Option::<AnyInputPin>::None,
)?;
signal_counter.channel_config(
PcntChannel::Channel0,
PinIndex::Pin0,
PinIndex::Pin1,
&PcntChannelConfig {
lctrl_mode: PcntControlMode::Keep,
hctrl_mode: PcntControlMode::Keep,
pos_mode: PcntCountMode::Increment,
neg_mode: PcntCountMode::Hold,
counter_h_lim: i16::MAX,
counter_l_lim: 0,
},
)?;
let adc_config = AdcChannelConfig {
attenuation: attenuation::DB_11,
resolution: Resolution::Resolution12Bit,
calibration: esp_idf_hal::adc::oneshot::config::Calibration::Curve,
};
let tank_driver = AdcDriver::new(peripherals.adc1)?;
let tank_channel: AdcChannelDriver<Gpio5, AdcDriver<esp_idf_hal::adc::ADC1>> =
AdcChannelDriver::new(tank_driver, peripherals.gpio5, &adc_config)?;
let mut solar_is_day = PinDriver::input(peripherals.gpio7.downgrade())?;
solar_is_day.set_pull(Pull::Floating)?;
let mut light = PinDriver::input_output(peripherals.gpio10.downgrade())?;
light.set_pull(Pull::Floating)?;
let mut tank_power = PinDriver::input_output(peripherals.gpio11.downgrade())?;
tank_power.set_pull(Pull::Floating)?;
let mut charge_indicator = PinDriver::input_output(peripherals.gpio3.downgrade())?;
charge_indicator.set_pull(Pull::Floating)?;
charge_indicator.set_low()?;
let mut pump_expander = Pca9535Immediate::new(MutexDevice::new(&I2C_DRIVER), 32);
//todo error handing if init error
for pin in 0..8 {
let _ = pump_expander.pin_into_output(GPIOBank::Bank0, pin);
let _ = pump_expander.pin_into_output(GPIOBank::Bank1, pin);
let _ = pump_expander.pin_set_low(GPIOBank::Bank0, pin);
let _ = pump_expander.pin_set_low(GPIOBank::Bank1, pin);
}
let mut sensor_expander = Pca9535Immediate::new(MutexDevice::new(&I2C_DRIVER), 34);
for pin in 0..8 {
let _ = sensor_expander.pin_into_output(GPIOBank::Bank0, pin);
let _ = sensor_expander.pin_into_output(GPIOBank::Bank1, pin);
let _ = sensor_expander.pin_set_low(GPIOBank::Bank0, pin);
let _ = sensor_expander.pin_set_low(GPIOBank::Bank1, pin);
}
let v = V4 {
esp,
awake,
tank_channel,
solar_is_day,
signal_counter,
light,
tank_power,
one_wire_bus,
rtc,
eeprom,
general_fault,
pump_expander,
sensor_expander,
charge_indicator,
config,
battery_monitor,
};
Ok(Box::new(v))
}
impl BoardInteraction<'_> for V4<'_> {
fn get_esp(&mut self) -> &mut ESP<'_> {
&mut self.esp
}
fn get_config(&mut self) -> &PlantControllerConfig {
&self.config
}
fn get_battery_monitor(&mut self) -> &mut Box<dyn BatteryInteraction> {
&mut self.battery_monitor
}
fn set_charge_indicator(&mut self, charging: bool) -> anyhow::Result<()> {
self.charge_indicator.set_state(charging.into()).expect("cannot fail");
Ok(())
}
fn deep_sleep(&mut self, duration_in_ms: u64) -> ! {
self.awake.set_low().unwrap();
deep_sleep(duration_in_ms);
}
fn get_backup_info(&mut self) -> anyhow::Result<BackupHeader> {
let store = bincode::serialize(&BackupHeader::default())?.len();
let mut header_page_buffer = vec![0_u8; store];
self.eeprom
.read_data(0, &mut header_page_buffer)
.map_err(|err| anyhow!("Error reading eeprom header {:?}", err))?;
println!("Raw header is {:?} with size {}", header_page_buffer, store);
let header: BackupHeader = bincode::deserialize(&header_page_buffer)?;
anyhow::Ok(header)
}
fn get_backup_config(&mut self) -> anyhow::Result<Vec<u8>> {
let store = bincode::serialize(&BackupHeader::default())?.len();
let mut header_page_buffer = vec![0_u8; store];
self.eeprom
.read_data(0, &mut header_page_buffer)
.map_err(|err| anyhow!("Error reading eeprom header {:?}", err))?;
let header: BackupHeader = bincode::deserialize(&header_page_buffer)?;
//skip page 0, used by the header
let data_start_address = self.eeprom.page_size() as u32;
let mut data_buffer = vec![0_u8; header.size];
self.eeprom
.read_data(data_start_address, &mut data_buffer)
.map_err(|err| anyhow!("Error reading eeprom data {:?}", err))?;
let checksum = X25.checksum(&data_buffer);
if checksum != header.crc16 {
bail!(
"Invalid checksum, got {} but expected {}",
checksum,
header.crc16
);
}
anyhow::Ok(data_buffer)
}
fn backup_config(&mut self, bytes: &[u8]) -> anyhow::Result<()> {
let time = self.get_rtc_time()?.timestamp_millis();
let delay = Delay::new_default();
let checksum = X25.checksum(bytes);
let page_size = self.eeprom.page_size();
let header = BackupHeader {
crc16: checksum,
timestamp: time,
size: bytes.len(),
};
let encoded = bincode::serialize(&header)?;
if encoded.len() > page_size {
bail!(
"Size limit reached header is {}, but firest page is only {}",
encoded.len(),
page_size
)
}
let as_u8: &[u8] = &encoded;
match self.eeprom.write_page(0, as_u8) {
OkStd(_) => {}
Err(err) => bail!("Error writing eeprom {:?}", err),
};
delay.delay_ms(5);
let to_write = bytes.chunks(page_size);
let mut lastiter = 0;
let mut current_page = 1;
for chunk in to_write {
let address = current_page * page_size as u32;
self.eeprom
.write_page(address, chunk)
.map_err(|err| anyhow!("Error writing eeprom {:?}", err))?;
current_page += 1;
let iter = (current_page % 8) as usize;
if iter != lastiter {
for i in 0..PLANT_COUNT {
let _ = self.fault(i, iter == i);
}
lastiter = iter;
}
delay.delay_ms(5);
}
anyhow::Ok(())
}
fn is_day(&self) -> bool {
self.solar_is_day.get_level().into()
}
fn water_temperature_c(&mut self) -> anyhow::Result<f32> {
self.one_wire_bus
.reset(&mut self.esp.delay)
.map_err(|err| -> anyhow::Error { anyhow!("Missing attribute: {:?}", err) })?;
let first = self.one_wire_bus.devices(false, &mut self.esp.delay).next();
if first.is_none() {
bail!("Not found any one wire Ds18b20");
}
let device_address = first
.unwrap()
.map_err(|err| -> anyhow::Error { anyhow!("Missing attribute: {:?}", err) })?;
let water_temp_sensor = Ds18b20::new::<EspError>(device_address)
.map_err(|err| -> anyhow::Error { anyhow!("Missing attribute: {:?}", err) })?;
water_temp_sensor
.start_temp_measurement(&mut self.one_wire_bus, &mut self.esp.delay)
.map_err(|err| -> anyhow::Error { anyhow!("Missing attribute: {:?}", err) })?;
ds18b20::Resolution::Bits12.delay_for_measurement_time(&mut self.esp.delay);
let sensor_data = water_temp_sensor
.read_data(&mut self.one_wire_bus, &mut self.esp.delay)
.map_err(|err| -> anyhow::Error { anyhow!("Missing attribute: {:?}", err) })?;
if sensor_data.temperature == 85_f32 {
bail!("Ds18b20 dummy temperature returned");
}
anyhow::Ok(sensor_data.temperature / 10_f32)
}
fn tank_sensor_voltage(&mut self) -> anyhow::Result<f32> {
self.tank_power.set_high()?;
//let stabilize
self.esp.delay.delay_ms(100);
let mut store = [0_u16; TANK_MULTI_SAMPLE];
for multisample in 0..TANK_MULTI_SAMPLE {
let value = self.tank_channel.read()?;
store[multisample] = value;
}
self.tank_power.set_low()?;
store.sort();
let median_mv = store[6] as f32 / 1000_f32;
anyhow::Ok(median_mv)
}
fn light(&mut self, enable: bool) -> anyhow::Result<()> {
unsafe { gpio_hold_dis(self.light.pin()) };
self.light.set_state(enable.into())?;
unsafe { gpio_hold_en(self.light.pin()) };
anyhow::Ok(())
}
fn pump(&mut self, plant: usize, enable: bool) -> anyhow::Result<()> {
if enable {
self.pump_expander.pin_set_high(GPIOBank::Bank0, plant.try_into()?)?;
} else {
self.pump_expander.pin_set_low(GPIOBank::Bank0, plant.try_into()?)?;
}
anyhow::Ok(())
}
fn fault(&mut self, plant: usize, enable: bool) -> anyhow::Result<()> {
if enable {
self.pump_expander.pin_set_high(GPIOBank::Bank1, plant.try_into()?)?
} else {
self.pump_expander.pin_set_low(GPIOBank::Bank1, plant.try_into()?)?
}
anyhow::Ok(())
}
fn measure_moisture_hz(&mut self, plant: usize, sensor: Sensor) -> anyhow::Result<f32> {
let mut results = [0_f32; REPEAT_MOIST_MEASURE];
for repeat in 0..REPEAT_MOIST_MEASURE {
self.signal_counter.counter_pause()?;
self.signal_counter.counter_clear()?;
//Disable all
self.sensor_expander.pin_set_high(GPIOBank::Bank0, MS4)?;
let sensor_channel = match sensor {
Sensor::A => plant as u32,
Sensor::B => (15 - plant) as u32,
};
let is_bit_set = |b: u8| -> bool { sensor_channel & (1 << b) != 0 };
if is_bit_set(0) {
self.sensor_expander.pin_set_high(GPIOBank::Bank0, MS0)?;
} else {
self.sensor_expander.pin_set_low(GPIOBank::Bank0, MS0)?;
}
if is_bit_set(1) {
self.sensor_expander.pin_set_high(GPIOBank::Bank0, MS1)?;
} else {
self.sensor_expander.pin_set_low(GPIOBank::Bank0, MS1)?;
}
if is_bit_set(2) {
self.sensor_expander.pin_set_high(GPIOBank::Bank0, MS2)?;
} else {
self.sensor_expander.pin_set_low(GPIOBank::Bank0, MS2)?;
}
if is_bit_set(3) {
self.sensor_expander.pin_set_high(GPIOBank::Bank0, MS3)?;
} else {
self.sensor_expander.pin_set_low(GPIOBank::Bank0, MS3)?;
}
self.sensor_expander.pin_set_low(GPIOBank::Bank0, MS4)?;
self.sensor_expander.pin_set_high(GPIOBank::Bank0, SENSOR_ON)?;
let delay = Delay::new_default();
let measurement = 100; // TODO what is this scaling factor? what is its purpose?
let factor = 1000f32 / measurement as f32;
//give some time to stabilize
delay.delay_ms(10);
self.signal_counter.counter_resume()?;
delay.delay_ms(measurement);
self.signal_counter.counter_pause()?;
self.sensor_expander.pin_set_high(GPIOBank::Bank0, MS4)?;
self.sensor_expander.pin_set_low(GPIOBank::Bank0, SENSOR_ON)?;
self.sensor_expander.pin_set_low(GPIOBank::Bank0, MS0)?;
self.sensor_expander.pin_set_low(GPIOBank::Bank0, MS1)?;
self.sensor_expander.pin_set_low(GPIOBank::Bank0, MS2)?;
self.sensor_expander.pin_set_low(GPIOBank::Bank0, MS3)?;
delay.delay_ms(10);
let unscaled = self.signal_counter.get_counter_value()? as i32;
let hz = unscaled as f32 * factor;
log(
LogMessage::RawMeasure,
unscaled as u32,
hz as u32,
&plant.to_string(),
&format!("{sensor:?}"),
);
results[repeat] = hz;
}
results.sort_by(|a, b| a.partial_cmp(b).unwrap()); // floats don't seem to implement total_ord
let mid = results.len() / 2;
let median = results[mid];
anyhow::Ok(median)
}
fn general_fault(&mut self, enable: bool) {
unsafe { gpio_hold_dis(self.general_fault.pin()) };
self.general_fault.set_state(enable.into()).unwrap();
unsafe { gpio_hold_en(self.general_fault.pin()) };
}
fn factory_reset(&mut self) -> anyhow::Result<()> {
println!("factory resetting");
self.esp.delete_config()?;
//destroy backup header
let dummy: [u8; 0] = [];
self.backup_config(&dummy)?;
anyhow::Ok(())
}
fn get_rtc_time(&mut self) -> anyhow::Result<DateTime<Utc>> {
match self.rtc.datetime() {
OkStd(rtc_time) => anyhow::Ok(rtc_time.and_utc()),
Err(err) => {
bail!("Error getting rtc time {:?}", err)
}
}
}
fn set_rtc_time(&mut self, time: &DateTime<Utc>) -> anyhow::Result<()> {
let naive_time = time.naive_utc();
match self.rtc.set_datetime(&naive_time) {
OkStd(_) => anyhow::Ok(()),
Err(err) => {
bail!("Error getting rtc time {:?}", err)
}
}
}
fn test_pump(&mut self, plant: usize) -> anyhow::Result<()> {
self.pump(plant, true)?;
self.esp.delay.delay_ms(30000);
self.pump(plant, false)?;
anyhow::Ok(())
}
fn test(&mut self) -> anyhow::Result<()> {
self.general_fault(true);
self.esp.delay.delay_ms(100);
self.general_fault(false);
self.esp.delay.delay_ms(500);
self.light(true)?;
self.esp.delay.delay_ms(500);
self.light(false)?;
self.esp.delay.delay_ms(500);
for i in 0..PLANT_COUNT {
self.fault(i, true)?;
self.esp.delay.delay_ms(500);
self.fault(i, false)?;
self.esp.delay.delay_ms(500);
}
for i in 0..PLANT_COUNT {
self.pump(i, true)?;
self.esp.delay.delay_ms(100);
self.pump(i, false)?;
self.esp.delay.delay_ms(100);
}
for plant in 0..PLANT_COUNT {
let a = self.measure_moisture_hz(plant, Sensor::A);
let b = self.measure_moisture_hz(plant, Sensor::B);
let aa = match a {
OkStd(a) => a as u32,
Err(_) => u32::MAX,
};
let bb = match b {
OkStd(b) => b as u32,
Err(_) => u32::MAX,
};
log(LogMessage::TestSensor, aa, bb, &plant.to_string(), "");
}
self.esp.delay.delay_ms(10);
anyhow::Ok(())
}
}