Merge branch 'hydro'

# Conflicts:
#	esp32/PlantControl.code-workspace
#	esp32/include/ControllerConfiguration.h
#	esp32/platformio.ini
#	esp32/src/main.cpp
This commit is contained in:
Empire 2022-04-27 19:19:26 +00:00
commit c43da98245
15 changed files with 566 additions and 570 deletions

View File

@ -3,5 +3,8 @@
// for the documentation about the extensions.json format
"recommendations": [
"platformio.platformio-ide"
],
"unwantedRecommendations": [
"ms-vscode.cpptools-extension-pack"
]
}

View File

@ -25,6 +25,7 @@
"fstream": "cpp",
"ostream": "cpp",
"sstream": "cpp"
"system_error": "cpp"
}
}
}

View File

@ -1,6 +1,51 @@
/**
* @file ControllerConfiguration.h
* @author your name (you@domain.com)
* @brief
* @version 0.1
* @date 2020-05-30
*
* @copyright Copyright (c) 2020
*
* \mainpage Configuration of the controller
* @{
* Describe the used PINs of the controller
*
* @subpage Controller
*
* @subpage Homie
*
* @subpage Configuration
*
* There are several modes in the controller
* \dot
* digraph Operationmode {
* ranksep=.75;
* poweroff [ label="off" ];
* mode1 [ label="Mode 1 - Sensor only", shape=box, width=2 ];
* mode2 [ label="Mode 2 - Wifi enabled", shape=box ];
* mode3 [ label="Mode 3 - Stay alive", shape=box ];
* mode1 -> mode2 [ label="wakeup reason", fontsize=10 ];
* mode1 -> mode2 [ label="Time duration", fontsize=10 ];
* mode2 -> mode3 [ label="Over the Air Update", fontsize=10 ];
* mode3 -> mode2 [ label="Over the Air Finished", fontsize=10 ];
* mode3 -> mode2 [ label="Mqtt Command", fontsize=10 ];
* mode2 -> mode3 [ label="Mqtt Command", fontsize=10 ];
* poweroff -> mode1 [ label="deep sleep wakeup", fontsize=10 ];
* mode1 -> poweroff [ label="enter deep sleep", fontsize=10 ];
* mode2 -> poweroff [ label="Mqtt queue empty", fontsize=10 ];
* }
* \enddot
*
* Before entering Deep sleep the controller is configured with an wakeup time.
*
* @}
*/
#ifndef CONTROLLER_CONFIG_H
#define CONTROLLER_CONFIG_H
/** \addtogroup GPIO Settings
* @{
*/
#define SENSOR_PLANT0 GPIO_NUM_32 /**< GPIO 32 (ADC1) */
#define SENSOR_PLANT1 GPIO_NUM_33 /**< GPIO 33 (ADC1) */
#define SENSOR_PLANT2 GPIO_NUM_25 /**< GPIO 25 (ADC2) */
@ -21,8 +66,8 @@
#define OUTPUT_ENABLE_PUMP GPIO_NUM_13 /**< GPIO 13 - Enable Pumps */
#define SENSOR_ONEWIRE GPIO_NUM_4 /**< GPIO 12 - Temperatur sensor, Battery and other cool onewire stuff */
#define SHARED_SCL GPIO_NUM_16 /**< GPIO 16 - echo feedback of water sensor */
#define SENSOR_TANK_SDA GPIO_NUM_17 /**< GPIO 17 - trigger for water sensor */
#define SENSOR_TANK_SDA GPIO_NUM_16 /**< GPIO 16 - echo feedback of water sensor */
#define SENSOR_TANK_SCL GPIO_NUM_17 /**< GPIO 17 - trigger for water sensor */
#define BUTTON GPIO_NUM_0 /**< GPIO 0 - Fix button of NodeMCU */
#define CUSTOM1_PIN1 GPIO_NUM_34 /** direct gpio */
@ -32,16 +77,24 @@
#define I2C1_SDA GPIO_NUM_34 /**< GPIO 34 - I2C */
#define I2C1_SCL GPIO_NUM_35 /**< GPIO 35 - I2C */
/* @} */
#define FIRMWARE_VERSION "sw2.201 hw0.10b"
/** \addtogroup Configuration
* @{
*/
#define CONFIG_BOOTLOADER_APP_ROLLBACK_ENABLE
#define CONFIG_COMPILER_CXX_EXCEPTIONS
#define FIRMWARE_VERSION "2.3 @ 0.10b"
#define TIMED_LIGHT_PIN CUSTOM1_PIN5
#define FLOWMETER_PIN CUSTOM1_PIN1
#ifdef FLOWMETER_PIN
#define FLOWMETER_FLOWFACTOR 23 /** F = 22 * Q;Q = L/min */
#define FLOWMETER_PULSES_PER_ML 2.2
#endif
#define MOIST_SENSOR_MAX_FRQ 10000 // 10kHz (as never more then 3000 was measured)
#define MOIST_SENSOR_MAX_FRQ 60000 // 60kHz (500Hz margin)
#define MOIST_SENSOR_MIN_FRQ 1000 // 1kHz (500Hz margin)
#define ANALOG_SENSOR_MAX_MV 4095 /**< Maximum according https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/adc.html */
@ -65,8 +118,6 @@
#define TEMPERATUR_TIMEOUT 3000 /**< 3 Seconds timeout for the temperatur sensors */
#define DS18B20_RESOLUTION 9 /**< 9bit temperature resolution -> 0.5°C steps */
#define PLANT_WITHOUT_TEMPSENSOR 100
#define UTC_OFFSET_DE 3600 /* UTC offset in seconds for Germany */
#define UTF_OFFSET_DE_DST 3600 /* offset in seconds if daylight saving time is active */

View File

@ -88,6 +88,7 @@ HomieSetting<const char *> ntpServer("ntpServer", "NTP server (pool.ntp.org as d
HomieSetting<long> timedLightStart("LightStart", "hour to start light");
HomieSetting<long> timedLightEnd("LightEnd", "hour to end light");
HomieSetting<bool> timedLightOnlyWhenDark("LightOnlyDark", "only enable light, if solar is low");
HomieSetting<long> timedLightPowerLevel("LightPowerLevel", "0-255 power level");
#endif // TIMED_LIGHT_PIN
@ -106,11 +107,11 @@ HomieSetting<const char *> ntpServer("ntpServer", "NTP server (pool.ntp.org as d
HomieSetting<long> mPumpAllowedHourRangeStart##plant = HomieSetting<long>("hourstart" strplant, "Plant" strplant " - Range pump allowed hour start (0-23)"); \
HomieSetting<long> mPumpAllowedHourRangeEnd##plant = HomieSetting<long>("hourend" strplant, "Plant" strplant " - Range pump allowed hour end (0-23)"); \
HomieSetting<bool> mPumpOnlyWhenLowLight##plant = HomieSetting<bool>("lowLight" strplant, "Plant" strplant " - Enable the Pump only, when there is no sunlight"); \
HomieSetting<long> mPumpCooldownInMinutes##plant = HomieSetting<long>("delay" strplant, "Plant" strplant " - How long to wait until the pump is activated again (minutes)"); \
HomieSetting<long> mPumpCooldownInSeconds##plant = HomieSetting<long>("delay" strplant, "Plant" strplant " - How long to wait until the pump is activated again (minutes)"); \
HomieSetting<long> pPumpDuration##plant = HomieSetting<long>("pumpDuration" strplant, "Plant" strplant " - time seconds to water when pump is active"); \
HomieSetting<long> pPumpMl##plant = HomieSetting<long>("pumpAmount" strplant, "Plant" strplant " - ml (if using flowmeter) to water when pump is active"); \
HomieSetting<long> pPowerLevel##plant = HomieSetting<long>("powerLevel" strplant, "Plant" strplant " - pwm duty cycle in percent"); \
PlantSettings_t mSetting##plant = {&mSensorDry##plant, &mPumpAllowedHourRangeStart##plant, &mPumpAllowedHourRangeEnd##plant, &mPumpOnlyWhenLowLight##plant, &mPumpCooldownInMinutes##plant, &pPumpDuration##plant, &pPowerLevel##plant, &pPumpMl##plant}; \
PlantSettings_t mSetting##plant = {&mSensorDry##plant, &mPumpAllowedHourRangeStart##plant, &mPumpAllowedHourRangeEnd##plant, &mPumpOnlyWhenLowLight##plant, &mPumpCooldownInSeconds##plant, &pPumpDuration##plant, &pPowerLevel##plant, &pPumpMl##plant}; \
/**< Generate all settings for one plant \
* \
* Feature to start pumping only at morning: @link{SOLAR_CHARGE_MIN_VOLTAGE} and @link{SOLAR_CHARGE_MAX_VOLTAGE} \

View File

@ -22,8 +22,7 @@
#define FOREACH_SENSOR(SENSOR) \
SENSOR(NONE) \
SENSOR(CAPACITIVE_FREQUENCY) \
SENSOR(ANALOG_RESISTANCE_PROBE) \
SENSOR(SHT20)
SENSOR(ANALOG_RESISTANCE_PROBE)
/**
* @}

View File

@ -37,3 +37,4 @@
#define LOG_SLEEP_DAY 101
#define LOG_SLEEP_CYCLE 102
#define LOG_MISSING_PUMP -4
#define LOG_BOOT_ERROR_DETECTION 10000

View File

@ -122,13 +122,6 @@ public:
}
}
float getCurrentTemperature(){
if(mTemperature_degree.getCount() == 0){
return PLANT_WITHOUT_TEMPSENSOR;
}
return mTemperature_degree.getMedian();
}
float getCurrentMoisturePCT()
{
switch (getSensorMode())
@ -139,8 +132,6 @@ public:
return mapf(mMoisture_raw.getMedian(), MOIST_SENSOR_MAX_FRQ, MOIST_SENSOR_MIN_FRQ, 0, 100);
case ANALOG_RESISTANCE_PROBE:
return mapf(mMoisture_raw.getMedian(), ANALOG_SENSOR_MIN_MV, ANALOG_SENSOR_MAX_MV, 0, 100);
case SHT20:
return mMoisture_raw.getMedian();
}
return MISSING_SENSOR;
}
@ -210,6 +201,12 @@ public:
{
return this->mSetting->pPumpDuration->get();
}
long getPumpMl()
{
return this->mSetting->pPumpMl->get();
}
};
#endif

188
esp32/include/ulp-pwm.h Normal file
View File

@ -0,0 +1,188 @@
#ifndef ULP_PWM_h
#define ILP_PWM_h
#include <Arduino.h>
#include "driver/rtc_io.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/rtc.h"
#include "esp32/ulp.h"
#include "ControllerConfiguration.h"
#define LBL_START 1
#define LBL_DELAY_ON 2
#define LBL_DELAY_OFF 3
#define LBL_SKIP_ON 4
#define LBL_SKIP_OFF 5
#define REGISTER_DELAY_LOOP_COUNTER R0
#define REGISTER_TICKS_ON R1
#define REGISTER_TICKS_OFF R2
#define TOTAL_TICKS_DELAY 255
#define PIN TIMED_LIGHT_PIN
//support 20 vars
const size_t ulp_var_offset = CONFIG_ULP_COPROC_RESERVE_MEM - 20;
//use the first for dimming
const size_t ulp_dimm_offset = ulp_var_offset + 1;
const size_t ulp_alive_offset = ulp_var_offset + 2;
//see https://github.com/perseus086/ESP32-notes
const uint32_t rtc_bit[40] = {
25, //gpio0
0, //gpio1
26, //gpio2
0, //gpio3
24, //gpio4
0, //gpio5
0, //gpio6
0, //gpio7
0, //gpio8
0, //gpio9
0, //gpio10
0, //gpio11
29, //gpio12
28, //gpio13
30, //gpio14
27, //gpio15
0, //gpio16
31, //gpio17
0, //gpio18
0, //gpio19
0, //gpio20
0, //gpio21
0, //gpio22
0, //gpio23
0, //gpio24
20, //gpio25
21, //gpio26
0, //gpio27
0, //gpio28
0, //gpio29
0, //gpio30
0, //gpio31
23, //gpio32
22, //gpio33
18, //gpio34
19, //gpio35
14, //gpio36
15, //gpio37
16, //gpio38
17 //gpio39
};
static inline void ulp_internal_data_write(size_t offset, uint16_t value)
{
if (offset >= CONFIG_ULP_COPROC_RESERVE_MEM || offset <= ulp_var_offset)
{
Serial.print("Invalid ULP offset detected, refusing write!");
Serial.print(offset);
Serial.print("-");
Serial.print(ulp_var_offset);
Serial.print("-");
Serial.println(CONFIG_ULP_COPROC_RESERVE_MEM);
return;
}
else
{
RTC_SLOW_MEM[offset] = value;
}
}
static inline uint16_t ulp_internal_data_read(size_t offset)
{
if (offset >= CONFIG_ULP_COPROC_RESERVE_MEM || offset <= ulp_var_offset)
{
Serial.print("Invalid ULP offset detected");
Serial.print(offset);
Serial.print("-");
Serial.print(ulp_var_offset);
Serial.print("-");
Serial.println(CONFIG_ULP_COPROC_RESERVE_MEM);
}
return RTC_SLOW_MEM[offset] & 0xffff;
}
static inline uint32_t rtc_io_number_get(gpio_num_t gpio_num)
{
assert(rtc_gpio_is_valid_gpio(gpio_num) && "Invalid GPIO for RTC");
uint32_t bit = rtc_bit[gpio_num];
Serial.print("Resolved GPIO ");
Serial.print(gpio_num);
Serial.print(" to rtc bit ");
Serial.println(bit);
return bit;
}
void ulp_internal_start(void)
{
rtc_gpio_init(PIN);
rtc_gpio_set_direction(PIN, RTC_GPIO_MODE_OUTPUT_ONLY);
rtc_gpio_set_level(PIN, 0);
const uint32_t rtc_gpio = rtc_io_number_get(PIN);
// Define ULP program
const ulp_insn_t ulp_prog[] = {
M_LABEL(LBL_START),
I_MOVI(REGISTER_DELAY_LOOP_COUNTER, 1),
I_MOVI(REGISTER_TICKS_ON, 0),
I_ST(REGISTER_DELAY_LOOP_COUNTER, REGISTER_TICKS_ON, ulp_alive_offset), //store 1 with 0 offset into alive
I_LD(REGISTER_TICKS_ON, REGISTER_TICKS_ON, ulp_dimm_offset), //REGISTER_TICKS_ON = RTC_DATA[0+ulp_dimm_offset]
//in total there is always 255 delay loop iterations, but in different duty cycle
I_MOVI(REGISTER_TICKS_OFF, TOTAL_TICKS_DELAY),
I_SUBR(REGISTER_TICKS_OFF, REGISTER_TICKS_OFF, REGISTER_TICKS_ON),
//on phase
I_MOVR(REGISTER_DELAY_LOOP_COUNTER, REGISTER_TICKS_ON),
M_BL(LBL_SKIP_ON, 1), //if never on, skip on phase
I_WR_REG(RTC_GPIO_OUT_REG, rtc_gpio, rtc_gpio, HIGH), // on
M_LABEL(LBL_DELAY_ON),
I_DELAY(1), //wait 1 clock
I_SUBI(REGISTER_DELAY_LOOP_COUNTER, REGISTER_DELAY_LOOP_COUNTER, 1), // REGISTER_DELAY_LOOP_COUNTER--
M_BGE(LBL_DELAY_ON, 1), //if time left, goto start of on loop
M_LABEL(LBL_SKIP_ON),
//off phase
I_MOVR(REGISTER_DELAY_LOOP_COUNTER, REGISTER_TICKS_OFF),
M_BL(LBL_SKIP_OFF, 1), //if never off, skip on phase
I_WR_REG(RTC_GPIO_OUT_REG, rtc_gpio, rtc_gpio, LOW), // on
M_LABEL(3),
I_DELAY(1), //wait 1 clock
I_SUBI(REGISTER_DELAY_LOOP_COUNTER, REGISTER_DELAY_LOOP_COUNTER, 1), // REGISTER_DELAY_LOOP_COUNTER--
M_BGE(3, 1), //if time left, goto start of on loop
M_LABEL(LBL_SKIP_OFF),
M_BX(LBL_START),
};
// Run ULP program
size_t size = sizeof(ulp_prog) / sizeof(ulp_insn_t);
assert(size < ulp_var_offset && "ULP_DATA_OFFSET needs to be greater or equal to the program size");
esp_err_t error = ulp_process_macros_and_load(0, ulp_prog, &size);
Serial.print("ULP bootstrap status ");
Serial.println(error);
//allow glitchless start
ulp_internal_data_write(ulp_alive_offset, 0);
error = ulp_run(0);
Serial.print("ULP start status ");
Serial.println(error);
}
static inline void ulp_pwm_set_level(uint8_t level)
{
ulp_internal_data_write(ulp_dimm_offset, level);
}
static inline void ulp_pwm_init()
{
ulp_internal_data_write(ulp_alive_offset, 0);
delay(10);
if (ulp_internal_data_read(ulp_alive_offset) == 0)
{
ulp_internal_start();
}
}
#endif

View File

@ -13,7 +13,7 @@ platform = espressif32
board = esp32doit-devkit-v1
framework = arduino
build_flags = -DPIO_FRAMEWORK_ARDUINO_LWIP2_LOW_MEMORY
-DPLANT0_SENSORTYPE=SHT20
-DPLANT0_SENSORTYPE=ANALOG_RESISTANCE_PROBE
-DPLANT1_SENSORTYPE=ANALOG_RESISTANCE_PROBE
-DPLANT2_SENSORTYPE=CAPACITIVE_FREQUENCY
-DPLANT3_SENSORTYPE=CAPACITIVE_FREQUENCY

View File

@ -47,7 +47,7 @@ void Plant::init(void)
this->mSetting->pPumpDuration->setDefaultValue(30);
this->mSetting->pPumpDuration->setValidator([](long candidate)
{ return ((candidate >= 0) && (candidate <= 1000)); });
this->mSetting->pPumpMl->setDefaultValue(0);
this->mSetting->pPumpMl->setDefaultValue(1000);
this->mSetting->pPumpMl->setValidator([](long candidate)
{ return ((candidate >= 0) && (candidate <= 5000)); });
this->mSetting->pPumpPowerLevel->setDefaultValue(100);
@ -91,7 +91,6 @@ void Plant::initSensors(void)
adcAttachPin(this->mPinSensor);
break;
}
case SHT20:
case NONE:
{
// do nothing
@ -113,34 +112,6 @@ void Plant::blockingMoistureMeasurement(void)
}
break;
}
case SHT20:
{
//do not assume valid i2c state, reinit
TwoWire sensorWire = TwoWire(0);
sensorWire.setPins(SENSOR_TANK_SDA, SHARED_SCL);
sht20.begin(&sensorWire);
sht20.reset();
delay(100);
if(!sht20.isConnected()){
Serial.println("SHT20 connection error");
}
bool success = sht20.read();
int error = sht20.getError();
if (error)
{
log(LOG_LEVEL_ERROR, "Failure reading SHT20 " + String(error), LOG_SENSOR_MISSING);
}
if (!success || error)
{
this->mMoisture_raw.clear();
this->mMoisture_raw.add(MISSING_SENSOR);
return;
}
mMoisture_raw.add(sht20.getHumidity());
mTemperature_degree.add(sht20.getTemperature());
break;
}
case CAPACITIVE_FREQUENCY:
case NONE:
{
@ -160,7 +131,6 @@ void Plant::startMoistureMeasurement(void)
pcnt_counter_resume(unit);
break;
}
case SHT20:
case ANALOG_RESISTANCE_PROBE:
case NONE:
{
@ -192,7 +162,6 @@ void Plant::stopMoistureMeasurement(void)
}
break;
}
case SHT20:
case ANALOG_RESISTANCE_PROBE:
case NONE:
{

View File

@ -35,12 +35,18 @@
#include <VL53L0X.h>
#include "driver/pcnt.h"
#include "MQTTUtils.h"
#include "esp_ota_ops.h"
#if defined(TIMED_LIGHT_PIN)
#include "ulp-pwm.h"
#endif
/******************************************************************************
* DEFINES
******************************************************************************/
#define AMOUNT_SENOR_QUERYS 8
#define MAX_TANK_DEPTH 2000
#define REBOOT_LOOP_DETECTION_ERROR 5
/******************************************************************************
* FUNCTION PROTOTYPES
@ -54,9 +60,7 @@ bool determineTimedLightState(bool lowLight);
/******************************************************************************
* NON VOLATILE VARIABLES in DEEP SLEEP
******************************************************************************/
#if defined(TIMED_LIGHT_PIN)
RTC_DATA_ATTR bool timedLightOn = false; /**< allow fast recovery after poweron */
RTC_DATA_ATTR bool timedLightLowVoltageTriggered = false; /**remember if it was shut down due to voltage level */
#endif // TIMED_LIGHT_PIN
@ -80,6 +84,7 @@ unsigned long setupFinishedTimestamp;
bool pumpStarted = false;
long pumpTarget = -1;
long pumpStartTime = 0;
long lastSendPumpUpdate = 0;
#ifdef FLOWMETER_PIN
long pumpTargetMl = -1;
@ -127,11 +132,28 @@ Plant mPlants[MAX_PLANTS] = {
* LOCAL FUNCTIONS
******************************************************************************/
void finsihedCycleSucessfully()
{
const esp_partition_t *running = esp_ota_get_running_partition();
esp_ota_img_states_t ota_state;
if (esp_ota_get_state_partition(running, &ota_state) == ESP_OK)
{
log(LOG_LEVEL_INFO, "Get State Partition was Successfull", LOG_BOOT_ERROR_DETECTION);
if (ota_state == ESP_OTA_IMG_PENDING_VERIFY)
{
log(LOG_LEVEL_INFO, "Diagnostics completed successfully! Marking as valid", LOG_BOOT_ERROR_DETECTION);
esp_ota_mark_app_valid_cancel_rollback();
}
}
}
void espDeepSleep(bool afterPump = false)
{
if (mDownloadMode)
{
log(LOG_LEVEL_DEBUG, "abort deepsleep, DownloadMode active", LOG_DEBUG_CODE);
//if we manage to get to the download mode, the device can be restored
finsihedCycleSucessfully();
return;
}
if (aliveWasRead())
@ -154,17 +176,7 @@ void espDeepSleep(bool afterPump = false)
}
}
//allo hold for all digital pins
gpio_deep_sleep_hold_en();
esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_PERIPH, ESP_PD_OPTION_OFF);
esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_SLOW_MEM, ESP_PD_OPTION_ON);
esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_FAST_MEM, ESP_PD_OPTION_ON);
esp_sleep_pd_config(ESP_PD_DOMAIN_XTAL, ESP_PD_OPTION_ON);
#if defined(TIMED_LIGHT_PIN)
gpio_hold_en(TIMED_LIGHT_PIN);
#endif // TIMED_LIGHT_PIN
esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_PERIPH, ESP_PD_OPTION_ON);
long secondsToSleep = -1;
@ -187,6 +199,7 @@ void espDeepSleep(bool afterPump = false)
}
}
finsihedCycleSucessfully();
esp_sleep_enable_timer_wakeup((secondsToSleep * 1000U * 1000U));
if (aliveWasRead())
{
@ -310,22 +323,12 @@ void readPowerSwitchedSensors()
Serial << "Plant " << i << " measurement: " << mPlants[i].getCurrentMoistureRaw() << " mV " << mPlants[i].getCurrentMoisturePCT() << "%" << endl;
break;
}
case SHT20:{
Serial << "Plant " << i << " measurement: " << mPlants[i].getCurrentTemperature() << "°C " << mPlants[i].getCurrentMoisturePCT() << "rH%" << endl;
break;
}
case NONE : {
}
}
}
//do not assume valid i2c state, force release of hardware
Wire = TwoWire(0);
Wire.setPins(SENSOR_TANK_SDA, SHARED_SCL);
Wire.begin();
waterRawSensor.clear();
tankSensor.setTimeout(500);
long start = millis();
@ -485,9 +488,14 @@ int determineNextPump(bool isLowLight)
}
else
{
if(mDownloadMode){
plant.publishState("active+supressed");
}else {
plant.publishState("active");
}
}
if (!plant.isHydroponic())
{
consecutiveWateringPlant[i]++;
@ -603,7 +611,7 @@ void initPumpLogic()
//set targets
#ifdef FLOWMETER_PIN
pumpTargetMl = mPlants[pumpToRun].getPumpDuration();
pumpTargetMl = mPlants[pumpToRun].getPumpMl();
//0-6 are used for moisture measurment
pcnt_unit_t unit = (pcnt_unit_t)(PCNT_UNIT_7);
@ -613,8 +621,8 @@ void initPumpLogic()
pcnt_config.unit = unit; // Unidade de contagem PCNT - 0
pcnt_config.channel = PCNT_CHANNEL_0; // Canal de contagem PCNT - 0
pcnt_config.counter_h_lim = INT16_MAX; // Limite maximo de contagem - 20000
pcnt_config.pos_mode = PCNT_COUNT_DIS; // Incrementa contagem na subida do pulso
pcnt_config.neg_mode = PCNT_COUNT_INC; // Incrementa contagem na descida do pulso
pcnt_config.pos_mode = PCNT_COUNT_INC; // Incrementa contagem na subida do pulso
pcnt_config.neg_mode = PCNT_COUNT_DIS; // Incrementa contagem na descida do pulso
pcnt_config.lctrl_mode = PCNT_MODE_KEEP; // PCNT - modo lctrl desabilitado
pcnt_config.hctrl_mode = PCNT_MODE_KEEP; // PCNT - modo hctrl - se HIGH conta incrementando
pcnt_unit_config(&pcnt_config); // Configura o contador PCNT
@ -622,8 +630,14 @@ void initPumpLogic()
pcnt_counter_clear(unit); // Zera o contador PCNT
pcnt_counter_resume(unit);
#endif
pumpStartTime = millis();
pumpTarget = millis() + (mPlants[pumpToRun].getPumpDuration() * 1000);
#ifdef FLOWMETER_PIN
log(LOG_LEVEL_INFO, "Starting pump " + String(pumpToRun) + " for " + String(mPlants[pumpToRun].getPumpDuration()) + "s or " + String(pumpTargetMl) + "ml", LOG_PUMP_STARTED_CODE);
#else
log(LOG_LEVEL_INFO, "Starting pump " + String(pumpToRun) + " for " + String(mPlants[pumpToRun].getPumpDuration()) + "s", LOG_PUMP_STARTED_CODE);
#endif
//enable power
WRITE_PERI_REG(RTC_CNTL_BROWN_OUT_REG, 0);
@ -652,8 +666,8 @@ void pumpActiveLoop()
mqttUpdateTick = true;
}
long duration = millis() - pumpStartTime;
#ifdef FLOWMETER_PIN
int16_t pulses;
pcnt_unit_t unit = (pcnt_unit_t)(PCNT_UNIT_7);
esp_err_t result = pcnt_get_counter_value(unit, &pulses);
@ -661,29 +675,29 @@ void pumpActiveLoop()
{
log(LOG_LEVEL_ERROR, LOG_HARDWARECOUNTER_ERROR_MESSAGE, LOG_HARDWARECOUNTER_ERROR_CODE);
targetReached = true;
log(LOG_LEVEL_INFO, "Reached pump target ml " + String(pumpToRun), LOG_PUMP_STARTED_CODE);
}
else
{
/**FLOWMETER_FLOWFACTOR * (L/Min) = F;
given 1L/min -> FLOWMETER_FLOWFACTOR*60 pulses per liter
-> 1000/result -> ml pro pulse;
-> result * pulses ->*/
long pumped = (FLOWMETER_FLOWFACTOR * 60) * pulses / 1000;
if (pumped >= pumpTargetMl)
float mLPumped = pulses/FLOWMETER_PULSES_PER_ML; //mLperMs*duration;
if (mLPumped >= pumpTargetMl)
{
targetReached = true;
pcnt_counter_pause(unit);
mPlants[pumpToRun].setProperty("waterusage").send(String(pumped));
mPlants[pumpToRun].setProperty("pulses").send(String(pulses));
mPlants[pumpToRun].setProperty("waterusage").send(String(mLPumped));
}
else if (mqttUpdateTick)
{
mPlants[pumpToRun].setProperty("waterusage").send(String(pumped));
mPlants[pumpToRun].setProperty("pulses").send(String(pulses));
mPlants[pumpToRun].setProperty("waterusage").send(String(mLPumped));
}
}
#endif
long pumpStarted = pumpTarget - (mPlants[pumpToRun].getPumpDuration() * 1000);
long duration = millis() - pumpStarted;
if (millis() > pumpTarget)
{
mPlants[pumpToRun].setProperty("watertime").send(String(duration));
@ -696,12 +710,10 @@ void pumpActiveLoop()
if (targetReached)
{
//disable all
digitalWrite(OUTPUT_ENABLE_PUMP, LOW);
for (int i = 0; i < MAX_PLANTS; i++)
{
mPlants[i].deactivatePump();
}
mPlants[pumpToRun].deactivatePump();
//disable loop, to prevent multi processing
pumpStarted = false;
//if runtime is larger than cooldown, else it would run continously
@ -723,9 +735,7 @@ void safeSetup()
//restore state before releasing pin, to prevent flickering
#if defined(TIMED_LIGHT_PIN)
pinMode(TIMED_LIGHT_PIN, OUTPUT);
digitalWrite(TIMED_LIGHT_PIN, timedLightOn);
gpio_hold_dis(TIMED_LIGHT_PIN);
ulp_pwm_init();
#endif // TIMED_LIGHT_PIN
/* Intialize Plant */
@ -778,13 +788,15 @@ void safeSetup()
{ return (candidate > 0) && (candidate < (20)); });
#if defined(TIMED_LIGHT_PIN)
timedLightPowerLevel.setDefaultValue(25).setValidator([](long candidate)
{ return (candidate > 0) && (candidate <= (255)); });
timedLightStart.setDefaultValue(18).setValidator([](long candidate)
{ return (candidate > 0) && (candidate < (25)); });
timedLightEnd.setDefaultValue(23).setValidator([](long candidate)
{ return (candidate > 0) && (candidate < (24)); });
timedLightOnlyWhenDark.setDefaultValue(true);
timedLightVoltageCutoff.setDefaultValue(3.8).setValidator([](double candidate)
{ return (candidate > 3.3) && (candidate < (4.2)); });
{ return ((candidate > 3.3 || candidate == -1) && (candidate < (50))); });
#endif // TIMED_LIGHT_PIN
Homie.setLoopFunction(homieLoop);
@ -800,6 +812,9 @@ void safeSetup()
Homie.setup();
Wire = TwoWire(0);
Wire.setPins(SENSOR_TANK_SDA, SENSOR_TANK_SCL);
Wire.begin();
/************************* Start One-Wire bus ***************/
@ -830,10 +845,6 @@ void safeSetup()
for (int i = 0; i < MAX_PLANTS; i++)
{
mPlants[i].advertise();
//write to temperature node instead
if(!equalish(mPlants[i].getCurrentTemperature(),PLANT_WITHOUT_TEMPSENSOR)){
mqttWrite(&sensorTemp, "Plant" + String(i), String(mPlants[i].getCurrentTemperature()));
}
}
mPlants[0].setSwitchHandler(switch1);
mPlants[1].setSwitchHandler(switch2);
@ -1056,7 +1067,17 @@ void plantcontrol()
Serial.flush();
}
bool isLowLight = (mSolarVoltage < SOLAR_CHARGE_MIN_VOLTAGE);
#if defined(TIMED_LIGHT_PIN)
bool isLowLight = mSolarVoltage <= 9;
bool shouldLight = determineTimedLightState(isLowLight);
if(shouldLight){
ulp_pwm_set_level(timedLightPowerLevel.get());
}else {
ulp_pwm_set_level(0);
}
#endif // TIMED_LIGHT_PIN
bool hasWater = true; //FIXME remaining > waterLevelMin.get();
//FIXME no water warning message
pumpToRun = determineNextPump(isLowLight);
@ -1083,12 +1104,6 @@ void plantcontrol()
{
espDeepSleep();
}
#if defined(TIMED_LIGHT_PIN)
bool shouldLight = determineTimedLightState(isLowLight);
timedLightOn = shouldLight;
digitalWrite(TIMED_LIGHT_PIN, shouldLight);
#endif // TIMED_LIGHT_PIN
}
/** @}*/
@ -1113,13 +1128,17 @@ bool determineTimedLightState(bool lowLight)
return false;
}
if (((hoursStart > hoursEnd) &&
(getCurrentHour() >= hoursStart || getCurrentHour() <= hoursEnd)) ||
/* Handle e.g. start = 8, end = 21 */
int curHour = getCurrentHour();
bool condition1 = ((hoursStart > hoursEnd) &&
(curHour >= hoursStart || curHour <= hoursEnd));
bool condition2 = /* Handle e.g. start = 8, end = 21 */
((hoursStart < hoursEnd) &&
(getCurrentHour() >= hoursStart && getCurrentHour() <= hoursEnd)))
(curHour >= hoursStart && curHour <= hoursEnd));
timedLightNode.setProperty("debug").send(String(curHour) + " " + String(hoursStart) + " " + String(hoursEnd) + " " + String(condition1) + " " + String(condition2));
if (condition1 || condition2)
{
if (!timedLightLowVoltageTriggered && battery.getVoltage(BATTSENSOR_INDEX_BATTERY) >= timedLightVoltageCutoff.get())
bool voltageOk = !timedLightLowVoltageTriggered && battery.getVoltage(BATTSENSOR_INDEX_BATTERY) >= timedLightVoltageCutoff.get();
if (voltageOk || equalish(timedLightVoltageCutoff.get(), -1))
{
timedLightNode.setProperty("state").send(String("On"));
return true;

View File

@ -1,112 +0,0 @@
/*
* DS2438.h
*
* by Joe Bechter
*
* (C) 2012, bechter.com
*
* All files, software, schematics and designs are provided as-is with no warranty.
* All files, software, schematics and designs are for experimental/hobby use.
* Under no circumstances should any part be used for critical systems where safety,
* life or property depends upon it. You are responsible for all use.
* You are free to use, modify, derive or otherwise extend for your own non-commercial purposes provided
* 1. No part of this software or design may be used to cause injury or death to humans or animals.
* 2. Use is non-commercial.
* 3. Credit is given to the author (i.e. portions © bechter.com), and provide a link to the original source.
*
*/
#ifndef DS2438_h
#define DS2438_h
#include <Arduino.h>
#include <OneWire.h>
#define DS2438_TEMPERATURE_CONVERSION_COMMAND 0x44
#define DS2438_VOLTAGE_CONVERSION_COMMAND 0xb4
#define DS2438_WRITE_SCRATCHPAD_COMMAND 0x4e
#define DS2438_COPY_SCRATCHPAD_COMMAND 0x48
#define DS2438_READ_SCRATCHPAD_COMMAND 0xbe
#define DS2438_RECALL_MEMORY_COMMAND 0xb8
#define PAGE_MIN 0
#define PAGE_MAX 7
#define DS2438_CHA 0
#define DS2438_CHB 1
#define DS2438_MODE_CHA 0x01
#define DS2438_MODE_CHB 0x02
#define DS2438_MODE_TEMPERATURE 0x04
#define DS2438_TEMPERATURE_DELAY 10
#define DS2438_VOLTAGE_CONVERSION_DELAY 8
#define DEFAULT_PAGE0(var) uint8_t var[8] { \
0b00001011 /* X, ADB=0, NVB=0, TB=0, AD=1, EE=0, CA=1, IAD=1 */, \
0, /* Temperatur */ \
0, /* Temperatur */ \
0, /* Voltage */ \
0, /* Voltage */ \
0, /* Current */ \
0, /* Current */ \
0 /* Threashold */ \
}
typedef struct PageOne {
uint8_t eleapsedTimerByte0; /**< LSB of timestamp */
uint8_t eleapsedTimerByte1;
uint8_t eleapsedTimerByte2;
uint8_t eleapsedTimerByte3; /**< MSB of timestamp */
uint8_t ICA; /**< Integrated Current Accumulator (current flowing into and out of the battery) */
uint8_t offsetRegisterByte0; /**< Offset for ADC calibdation */
uint8_t offsetRegisterByte1; /**< Offset for ADC calibdation */
uint8_t reserved;
} PageOne_t;
typedef struct PageSeven {
uint8_t userByte0;
uint8_t userByte1;
uint8_t userByte2;
uint8_t userByte3;
uint8_t CCA0; /**< Charging Current Accumulator (CCA) */
uint8_t CCA1; /**< Charging Current Accumulator (CCA) */
uint8_t DCA0; /**< Discharge Current Accumulator (DCA) */
uint8_t DCA1; /**< Discharge Current Accumulator (DCA) */
} PageSeven_t;
typedef uint8_t DeviceAddress[8];
class DS2438 {
public:
DS2438(OneWire *ow, float currentShunt);
DS2438(OneWire *ow, uint8_t *address);
void begin();
void update();
double getTemperature();
float getVoltage(int channel=DS2438_CHA);
float getCurrent();
boolean isError();
boolean isFound();
private:
bool validAddress(const uint8_t*);
bool validFamily(const uint8_t* deviceAddress);
bool deviceFound = false;
OneWire *_ow;
DeviceAddress _address;
uint8_t _mode;
double _temperature;
float _voltageA;
float _voltageB;
float _current;
float _currentShunt;
boolean _error;
boolean startConversion(int channel, boolean doTemperature);
boolean selectChannel(int channel);
void writePage(int page, uint8_t *data);
boolean readPage(int page, uint8_t *data);
};
#endif

View File

@ -0,0 +1,187 @@
#ifndef ULP_PWM_h
#define ILP_PWM_h
#include <Arduino.h>
#include "driver/rtc_io.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/rtc.h"
#include "esp32/ulp.h"
#define LBL_START 1
#define LBL_DELAY_ON 2
#define LBL_DELAY_OFF 3
#define LBL_SKIP_ON 4
#define LBL_SKIP_OFF 5
#define REGISTER_DELAY_LOOP_COUNTER R0
#define REGISTER_TICKS_ON R1
#define REGISTER_TICKS_OFF R2
#define TOTAL_TICKS_DELAY 255
#define PIN GPIO_NUM_12
//support 20 vars
const size_t ulp_var_offset = CONFIG_ULP_COPROC_RESERVE_MEM - 20;
//use the first for dimming
const size_t ulp_dimm_offset = ulp_var_offset + 1;
const size_t ulp_alive_offset = ulp_var_offset + 2;
//see https://github.com/perseus086/ESP32-notes
const uint32_t rtc_bit[40] = {
25, //gpio0
0, //gpio1
26, //gpio2
0, //gpio3
24, //gpio4
0, //gpio5
0, //gpio6
0, //gpio7
0, //gpio8
0, //gpio9
0, //gpio10
0, //gpio11
29, //gpio12
28, //gpio13
30, //gpio14
27, //gpio15
0, //gpio16
31, //gpio17
0, //gpio18
0, //gpio19
0, //gpio20
0, //gpio21
0, //gpio22
0, //gpio23
0, //gpio24
20, //gpio25
21, //gpio26
0, //gpio27
0, //gpio28
0, //gpio29
0, //gpio30
0, //gpio31
23, //gpio32
22, //gpio33
18, //gpio34
19, //gpio35
14, //gpio36
15, //gpio37
16, //gpio38
17 //gpio39
};
static inline void ulp_data_write(size_t offset, uint16_t value)
{
if (offset >= CONFIG_ULP_COPROC_RESERVE_MEM || offset <= ulp_var_offset)
{
Serial.print("Invalid ULP offset detected, refusing write!");
Serial.print(offset);
Serial.print("-");
Serial.print(ulp_var_offset);
Serial.print("-");
Serial.println(CONFIG_ULP_COPROC_RESERVE_MEM);
return;
}
else
{
RTC_SLOW_MEM[offset] = value;
}
}
static inline uint16_t ulp_data_read(size_t offset)
{
if (offset >= CONFIG_ULP_COPROC_RESERVE_MEM || offset <= ulp_var_offset)
{
Serial.print("Invalid ULP offset detected");
Serial.print(offset);
Serial.print("-");
Serial.print(ulp_var_offset);
Serial.print("-");
Serial.println(CONFIG_ULP_COPROC_RESERVE_MEM);
}
return RTC_SLOW_MEM[offset] & 0xffff;
}
static inline uint32_t rtc_io_number_get(gpio_num_t gpio_num)
{
assert(rtc_gpio_is_valid_gpio(gpio_num) && "Invalid GPIO for RTC");
uint32_t bit = rtc_bit[gpio_num];
Serial.print("Resolved GPIO ");
Serial.print(gpio_num);
Serial.print(" to rtc bit ");
Serial.println(bit);
return bit;
}
void ulp_pwm_start(void)
{
rtc_gpio_init(PIN);
rtc_gpio_set_direction(PIN, RTC_GPIO_MODE_OUTPUT_ONLY);
rtc_gpio_set_level(PIN, 0);
const uint32_t rtc_gpio = rtc_io_number_get(PIN);
// Define ULP program
const ulp_insn_t ulp_prog[] = {
M_LABEL(LBL_START),
I_MOVI(REGISTER_DELAY_LOOP_COUNTER, 1),
I_MOVI(REGISTER_TICKS_ON, 0),
I_ST(REGISTER_DELAY_LOOP_COUNTER, REGISTER_TICKS_ON, ulp_alive_offset), //store 1 with 0 offset into alive
I_LD(REGISTER_TICKS_ON, REGISTER_TICKS_ON, ulp_dimm_offset), //REGISTER_TICKS_ON = RTC_DATA[0+ulp_dimm_offset]
//in total there is always 255 delay loop iterations, but in different duty cycle
I_MOVI(REGISTER_TICKS_OFF, TOTAL_TICKS_DELAY),
I_SUBR(REGISTER_TICKS_OFF, REGISTER_TICKS_OFF, REGISTER_TICKS_ON),
//on phase
I_MOVR(REGISTER_DELAY_LOOP_COUNTER, REGISTER_TICKS_ON),
M_BL(LBL_SKIP_ON, 1), //if never on, skip on phase
I_WR_REG(RTC_GPIO_OUT_REG, rtc_gpio, rtc_gpio, HIGH), // on
M_LABEL(LBL_DELAY_ON),
I_DELAY(1), //wait 1 clock
I_SUBI(REGISTER_DELAY_LOOP_COUNTER, REGISTER_DELAY_LOOP_COUNTER, 1), // REGISTER_DELAY_LOOP_COUNTER--
M_BGE(LBL_DELAY_ON, 1), //if time left, goto start of on loop
M_LABEL(LBL_SKIP_ON),
//off phase
I_MOVR(REGISTER_DELAY_LOOP_COUNTER, REGISTER_TICKS_OFF),
M_BL(LBL_SKIP_OFF, 1), //if never off, skip on phase
I_WR_REG(RTC_GPIO_OUT_REG, rtc_gpio, rtc_gpio, LOW), // on
M_LABEL(3),
I_DELAY(1), //wait 1 clock
I_SUBI(REGISTER_DELAY_LOOP_COUNTER, REGISTER_DELAY_LOOP_COUNTER, 1), // REGISTER_DELAY_LOOP_COUNTER--
M_BGE(3, 1), //if time left, goto start of on loop
M_LABEL(LBL_SKIP_OFF),
M_BX(LBL_START),
};
// Run ULP program
size_t size = sizeof(ulp_prog) / sizeof(ulp_insn_t);
assert(size < ulp_var_offset && "ULP_DATA_OFFSET needs to be greater or equal to the program size");
esp_err_t error = ulp_process_macros_and_load(0, ulp_prog, &size);
Serial.print("ULP bootstrap status ");
Serial.println(error);
//allow glitchless start
ulp_data_write(ulp_alive_offset, 0);
error = ulp_run(0);
Serial.print("ULP start status ");
Serial.println(error);
}
static inline void ulp_pwm_set_level(uint8_t level)
{
ulp_data_write(ulp_dimm_offset, level);
}
static inline void ulp_pwm_init()
{
ulp_data_write(ulp_alive_offset, 0);
delay(10);
if (ulp_data_read(ulp_alive_offset) == 0)
{
ulp_pwm_start();
}
}
#endif

View File

@ -1,286 +0,0 @@
/*
* DS2438.cpp
*
* by Joe Bechter
*
* (C) 2012, bechter.com
*
* All files, software, schematics and designs are provided as-is with no warranty.
* All files, software, schematics and designs are for experimental/hobby use.
* Under no circumstances should any part be used for critical systems where safety,
* life or property depends upon it. You are responsible for all use.
* You are free to use, modify, derive or otherwise extend for your own non-commercial purposes provided
* 1. No part of this software or design may be used to cause injury or death to humans or animals.
* 2. Use is non-commercial.
* 3. Credit is given to the author (i.e. portions © bechter.com), and provide a link to the original source.
*
*/
#include "DS2438.h"
// DSROM FIELDS
#define DSROM_FAMILY 0
#define DSROM_CRC 7
#define DS2438MODEL 0x26
DS2438::DS2438(OneWire *ow, float currentShunt = 1.0f) {
_ow = ow;
_currentShunt = currentShunt;
};
void DS2438::begin(){
DeviceAddress searchDeviceAddress;
_ow->reset_search();
memset(searchDeviceAddress,0, 8);
_temperature = 0;
_voltageA = 0.0;
_voltageB = 0.0;
_error = true;
_mode = (DS2438_MODE_CHA | DS2438_MODE_CHB | DS2438_MODE_TEMPERATURE);
deviceFound = false; // Reset the number of devices when we enumerate wire devices
while (_ow->search(searchDeviceAddress)) {
if (validAddress(searchDeviceAddress)) {
if (validFamily(searchDeviceAddress)) {
memcpy(_address,searchDeviceAddress,8);
DEFAULT_PAGE0(defaultConfig);
writePage(0, defaultConfig);
deviceFound = true;
}
}
}
}
bool DS2438::isFound(){
return deviceFound;
}
bool DS2438::validAddress(const uint8_t* deviceAddress) {
return (_ow->crc8(deviceAddress, 7) == deviceAddress[DSROM_CRC]);
}
bool DS2438::validFamily(const uint8_t* deviceAddress) {
switch (deviceAddress[DSROM_FAMILY]) {
case DS2438MODEL:
return true;
default:
return false;
}
}
void DS2438::update() {
uint8_t data[9];
_error = true;
if(!isFound()){
return;
}
if (_mode & DS2438_MODE_CHA || _mode == DS2438_MODE_TEMPERATURE) {
boolean doTemperature = _mode & DS2438_MODE_TEMPERATURE;
if (!startConversion(DS2438_CHA, doTemperature)) {
Serial.println("Error starting temp conversion ds2438 channel a");
return;
}
if (!readPage(0, data)){
Serial.println("Error reading zero page ds2438 channel a");
return;
}
Serial.print(data[0],16);
Serial.print(" ");
Serial.print(data[1],16);
Serial.print(" ");
Serial.print(data[2],16);
Serial.print(" ");
Serial.print(data[3],16);
Serial.print(" ");
Serial.print(data[4],16);
Serial.print(" ");
Serial.print(data[5],16);
Serial.print(" ");
Serial.print(data[6],16);
Serial.print(" ");
Serial.println(data[7],16);
if (doTemperature) {
_temperature = (double)(((((int16_t)data[2]) << 8) | (data[1] & 0x0ff)) >> 3) * 0.03125;
}
if (_mode & DS2438_MODE_CHA) {
_voltageA = (((data[4] << 8) & 0x00300) | (data[3] & 0x0ff)) / 100.0;
}
}
if (_mode & DS2438_MODE_CHB) {
boolean doTemperature = _mode & DS2438_MODE_TEMPERATURE && !(_mode & DS2438_MODE_CHA);
if (!startConversion(DS2438_CHB, doTemperature)) {
Serial.println("Error starting temp conversion channel b ds2438");
return;
}
if (!readPage(0, data)){
Serial.println("Error reading zero page ds2438 channel b");
return;
}
if (doTemperature) {
int16_t upperByte = ((int16_t)data[2]) << 8;
int16_t lowerByte = data[1] >> 3;
int16_t fullByte = (upperByte | lowerByte);
_temperature = ((double)fullByte) * 0.03125;
}
_voltageB = (((data[4] << 8) & 0x00300) | (data[3] & 0x0ff)) / 100.0;
}
int16_t upperByte = ((int16_t)data[6]) << 8;
int16_t lowerByte = data[5];
int16_t fullByte = (int16_t)(upperByte | lowerByte);
float fullByteb = fullByte;
_current = (fullByteb) / ((4096.0f * _currentShunt));
_error = false;
Serial.print(data[0],16);
Serial.print(" ");
Serial.print(data[1],16);
Serial.print(" ");
Serial.print(data[2],16);
Serial.print(" ");
Serial.print(data[3],16);
Serial.print(" ");
Serial.print(data[4],16);
Serial.print(" ");
Serial.print(data[5],16);
Serial.print(" ");
Serial.print(data[6],16);
Serial.print(" ");
Serial.println(data[7],16);
Serial.println("-");
uint16_t ICA = 0;
if (readPage(1, data)){
PageOne_t *pOne = (PageOne_t *) data;
Serial.println(pOne->ICA);
float Ah = pOne->ICA / (2048.0f * _currentShunt);
Serial.print("Ah=");
Serial.println(Ah);
ICA = pOne->ICA;
}
if (readPage(7, data)){
PageSeven_t *pSeven = (PageSeven_t *) data;
int16_t CCA = pSeven->CCA0 | ((int16_t) pSeven->CCA1) << 8;
int16_t DCA = pSeven->DCA0 | ((int16_t) pSeven->DCA1) << 8;
Serial.println("ICA, DCA, CCA");
Serial.print(ICA);
Serial.print(", ");
Serial.print(DCA);
Serial.print(", ");
Serial.println(CCA);
}
}
double DS2438::getTemperature() {
return _temperature;
}
float DS2438::getVoltage(int channel) {
if (channel == DS2438_CHA) {
return _voltageA;
} else if (channel == DS2438_CHB) {
return _voltageB;
} else {
return 0.0;
}
}
float DS2438::getCurrent() {
return _current;
}
boolean DS2438::isError() {
return _error;
}
boolean DS2438::startConversion(int channel, boolean doTemperature) {
if(!isFound()){
return false;
}
if (!selectChannel(channel)){
return false;
}
_ow->reset();
_ow->select(_address);
if (doTemperature) {
_ow->write(DS2438_TEMPERATURE_CONVERSION_COMMAND, 0);
delay(DS2438_TEMPERATURE_DELAY);
_ow->reset();
_ow->select(_address);
}
_ow->write(DS2438_VOLTAGE_CONVERSION_COMMAND, 0);
delay(DS2438_VOLTAGE_CONVERSION_DELAY);
return true;
}
boolean DS2438::selectChannel(int channel) {
if(!isFound()){
return false;
}
uint8_t data[9];
if (readPage(0, data)) {
if (channel == DS2438_CHB){
data[0] = data[0] | 0x08;
}
else {
data[0] = data[0] & 0xf7;
}
writePage(0, data);
return true;
}
Serial.println("Could not read page zero data");
return false;
}
void DS2438::writePage(int page, uint8_t *data) {
_ow->reset();
_ow->select(_address);
_ow->write(DS2438_WRITE_SCRATCHPAD_COMMAND, 0);
if ((page >= PAGE_MIN) && (page <= PAGE_MAX)) {
_ow->write(page, 0);
} else {
return;
}
for (int i = 0; i < 8; i++){
_ow->write(data[i], 0);
}
_ow->reset();
_ow->select(_address);
_ow->write(DS2438_COPY_SCRATCHPAD_COMMAND, 0);
_ow->write(page, 0);
}
boolean DS2438::readPage(int page, uint8_t *data) {
//TODO if all data is 0 0 is a valid crc, but most likly not as intended
_ow->reset();
_ow->select(_address);
_ow->write(DS2438_RECALL_MEMORY_COMMAND, 0);
if ((page >= PAGE_MIN) && (page <= PAGE_MAX)) {
_ow->write(page, 0);
} else {
return false;
}
_ow->reset();
_ow->select(_address);
_ow->write(DS2438_READ_SCRATCHPAD_COMMAND, 0);
_ow->write(page, 0);
for (int i = 0; i < 9; i++){
data[i] = _ow->read();
}
return _ow->crc8(data, 8) == data[8];
}

View File

@ -1,52 +1,30 @@
#include <Arduino.h>
#include "driver/pcnt.h"
#include "ulp-pwm.h"
#define OUTPUT_SENSOR 14 /**< GPIO 16 - Enable Sensors */
#define SENSOR_PLANT5 39 /**< SENSOR vn */
#define SENSOR_PLANT6 36 /**< SENSOR VP */
int16_t pulses = 0;
int16_t pulses2 = 0;
void setup() {
RTC_SLOW_ATTR uint8_t tick = 0;
RTC_SLOW_ATTR bool dir = true;
void setup()
{
Serial.begin(115200);
pinMode(OUTPUT_SENSOR, OUTPUT);
pinMode(SENSOR_PLANT5, INPUT);
Serial.println(rtc_io_number_get(GPIO_NUM_12));
ulp_pwm_init();
pcnt_config_t pcnt_config = { }; // Instancia PCNT config
pcnt_config.pulse_gpio_num = SENSOR_PLANT5; // Configura GPIO para entrada dos pulsos
pcnt_config.ctrl_gpio_num = PCNT_PIN_NOT_USED; // Configura GPIO para controle da contagem
pcnt_config.unit = PCNT_UNIT_0; // Unidade de contagem PCNT - 0
pcnt_config.channel = PCNT_CHANNEL_0; // Canal de contagem PCNT - 0
pcnt_config.counter_h_lim = INT16_MAX; // Limite maximo de contagem - 20000
pcnt_config.pos_mode = PCNT_COUNT_INC; // Incrementa contagem na subida do pulso
pcnt_config.neg_mode = PCNT_COUNT_DIS; // Incrementa contagem na descida do pulso
pcnt_config.lctrl_mode = PCNT_MODE_KEEP; // PCNT - modo lctrl desabilitado
pcnt_config.hctrl_mode = PCNT_MODE_KEEP; // PCNT - modo hctrl - se HIGH conta incrementando
pcnt_unit_config(&pcnt_config); // Configura o contador PCNT
pcnt_counter_pause(PCNT_UNIT_0); // Pausa o contador PCNT
pcnt_counter_clear(PCNT_UNIT_0); // Zera o contador PCNT
digitalWrite(OUTPUT_SENSOR, HIGH);
Serial.println("Start done");
if (dir) {
tick += 10;
} else {
tick -= 10;
}
ulp_pwm_set_level(tick);
if (tick == 250 || tick == 0) {
dir = !dir;
}
esp_sleep_enable_timer_wakeup(1000000);
Serial.println(ulp_data_read(ulp_dimm_offset));
esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_PERIPH, ESP_PD_OPTION_ON);
esp_deep_sleep_start();
}
void loop() {
pulses2 = pulseIn(SENSOR_PLANT5,HIGH);
pcnt_counter_resume(PCNT_UNIT_0);
void loop(){
delay(500);
pcnt_counter_pause(PCNT_UNIT_0);
pcnt_get_counter_value(PCNT_UNIT_0, &pulses);
pcnt_counter_clear(PCNT_UNIT_0);
Serial.println(pulses2*2);
Serial.println(pulses*2);
}