main pump handler

This commit is contained in:
Empire 2024-01-09 00:16:13 +01:00
parent b9ec3247af
commit b5b5b25238
3 changed files with 251 additions and 124 deletions

View File

@ -14,8 +14,8 @@ pub struct Config {
pub tank_sensor_enabled: bool, pub tank_sensor_enabled: bool,
pub tank_useable_ml: u32, pub tank_useable_ml: u32,
pub tank_warn_percent: u8, pub tank_warn_percent: u8,
pub tank_empty_mv: f32, pub tank_empty_mv: u16,
pub tank_full_mv: f32, pub tank_full_mv: u16,
pub night_lamp_hour_start: u8, pub night_lamp_hour_start: u8,
pub night_lamp_hour_end: u8, pub night_lamp_hour_end: u8,
@ -38,8 +38,8 @@ impl Default for Config {
plants: [Plant::default(); PLANT_COUNT], plants: [Plant::default(); PLANT_COUNT],
max_consecutive_pump_count: 15, max_consecutive_pump_count: 15,
tank_useable_ml: 5000, tank_useable_ml: 5000,
tank_empty_mv: 0.1, tank_empty_mv: 0100_u16,
tank_full_mv: 3.3, tank_full_mv: 3300_u16,
} }
} }
} }
@ -48,6 +48,7 @@ pub enum Mode {
OFF, OFF,
TargetMoisture, TargetMoisture,
TimerOnly, TimerOnly,
TimerAndDeadzone,
} }
#[derive(Serialize, Deserialize, Copy, Clone, Debug, PartialEq)] #[derive(Serialize, Deserialize, Copy, Clone, Debug, PartialEq)]

View File

@ -3,11 +3,11 @@ use std::{
sync::{atomic::AtomicBool, Arc, Mutex}, sync::{atomic::AtomicBool, Arc, Mutex},
}; };
use anyhow::Result; use anyhow::{Result, bail};
use chrono::{Datelike, Duration, NaiveDateTime, Timelike}; use chrono::{Datelike, Duration, NaiveDateTime, Timelike, DateTime};
use chrono_tz::Europe::Berlin; use chrono_tz::{Europe::Berlin, Tz};
use esp_idf_hal::delay::Delay; use esp_idf_hal::delay::Delay;
use esp_idf_sys::{esp_restart, vTaskDelay}; use esp_idf_sys::{esp_restart, vTaskDelay, CONFIG_FREERTOS_HZ, esp_deep_sleep};
use esp_ota::rollback_and_reboot; use esp_ota::rollback_and_reboot;
use log::error; use log::error;
use once_cell::sync::Lazy; use once_cell::sync::Lazy;
@ -51,16 +51,21 @@ enum WaitType {
#[derive(Serialize, Deserialize, Copy, Clone, Debug, PartialEq, Default)] #[derive(Serialize, Deserialize, Copy, Clone, Debug, PartialEq, Default)]
struct PlantState { struct PlantState {
a: u8, a: Option<u8>,
b: u8, b: Option<u8>,
p: u8, p: Option<u8>,
after_p: u8, after_p: Option<u8>,
do_water: bool,
dry: bool, dry: bool,
active: bool, active: bool,
pump_error: bool, pump_error: bool,
not_effective: bool, not_effective: bool,
cooldown: bool, cooldown: bool,
no_water: bool, no_water: bool,
sensor_error_a: bool,
sensor_error_b: bool,
sensor_error_p: bool,
out_of_work_hour: bool
} }
fn wait_infinity(wait_type: WaitType, reboot_now: Arc<AtomicBool>) -> ! { fn wait_infinity(wait_type: WaitType, reboot_now: Arc<AtomicBool>) -> ! {
@ -91,7 +96,9 @@ fn wait_infinity(wait_type: WaitType, reboot_now: Arc<AtomicBool>) -> ! {
vTaskDelay(delay); vTaskDelay(delay);
if wait_type == WaitType::StayAlive if wait_type == WaitType::StayAlive
&& !STAY_ALIVE.load(std::sync::atomic::Ordering::Relaxed) && !STAY_ALIVE.load(std::sync::atomic::Ordering::Relaxed)
{} {
reboot_now.store(true, std::sync::atomic::Ordering::Relaxed);
}
if reboot_now.load(std::sync::atomic::Ordering::Relaxed) { if reboot_now.load(std::sync::atomic::Ordering::Relaxed) {
println!("Rebooting"); println!("Rebooting");
esp_restart(); esp_restart();
@ -103,8 +110,131 @@ fn wait_infinity(wait_type: WaitType, reboot_now: Arc<AtomicBool>) -> ! {
pub static BOARD_ACCESS: Lazy<Mutex<PlantCtrlBoard>> = Lazy::new(|| PlantHal::create().unwrap()); pub static BOARD_ACCESS: Lazy<Mutex<PlantCtrlBoard>> = Lazy::new(|| PlantHal::create().unwrap());
pub static STAY_ALIVE: Lazy<AtomicBool> = Lazy::new(|| AtomicBool::new(false)); pub static STAY_ALIVE: Lazy<AtomicBool> = Lazy::new(|| AtomicBool::new(false));
fn map_range(from_range: (f32, f32), to_range: (f32, f32), s: f32) -> f32 { fn map_range(from_range: (f32, f32), s: f32) -> Result<f32> {
to_range.0 + (s - from_range.0) * (to_range.1 - to_range.0) / (from_range.1 - from_range.0) if s < from_range.0 {
bail!("Value out of range, min {} but current is {}", from_range.0, s);
}
if s > from_range.1 {
bail!("Value out of range, max {} but current is {}", from_range.1, s);
}
return Ok(TO.0 + (s - from_range.0) * (TO.1 - TO.0) / (from_range.1 - from_range.0));
}
fn map_range_moisture(s: f32) -> Result<u8> {
if s < FROM.0 {
bail!("Value out of range, min {} but current is {}", FROM.0, s);
}
if s > FROM.1 {
bail!("Value out of range, max {} but current is {}", FROM.1, s);
}
let tmp = TO.0 + (s - FROM.0) * (TO.1 - TO.0) / (FROM.1 - FROM.0);
return Ok(tmp as u8);
}
fn in_time_range(cur: DateTime<Tz>, start:u8, end:u8) -> bool{
let curhour = cur.hour() as u8;
//eg 10-14
if(start < end){
return curhour > start && curhour < end;
} else {
//eg 20-05
return curhour > start || curhour < end;;
}
}
fn determine_next_plant(plantstate: &mut [PlantState;PLANT_COUNT],cur: DateTime<Tz>, enough_water: bool, tank_sensor_error: bool, config: &Config, board: &mut std::sync::MutexGuard<'_, PlantCtrlBoard<'_>>) -> Option<usize> {
for plant in 0..PLANT_COUNT {
let state = &mut plantstate[plant];
let plant_config = config.plants[plant];
match plant_config.mode {
config::Mode::OFF => {
},
config::Mode::TargetMoisture => {
match board.measure_moisture_hz(plant, plant_hal::Sensor::A).and_then (|moist| map_range_moisture(moist as f32)) {
Ok(a) => state.a = Some(a),
Err(err) => {
board.fault(plant, true);
println!("Could not determine Moisture A for plant {} due to {}", plant, err);
state.a = None;
state.sensor_error_a = true;
}
}
match board.measure_moisture_hz(plant, plant_hal::Sensor::B).and_then (|moist| map_range_moisture(moist as f32)) {
Ok(b) => state.b = Some(b),
Err(err) => {
board.fault(plant, true);
println!("Could not determine Moisture B for plant {} due to {}", plant, err);
state.b = None;
state.sensor_error_b = true;
}
}
//FIXME how to average analyze whatever?
let a_low = state.a.is_some() && state.a.unwrap() < plant_config.target_moisture;
let b_low = state.b.is_some() && state.b.unwrap() < plant_config.target_moisture;
if a_low || b_low {
state.dry = true;
if tank_sensor_error && !config.tank_allow_pumping_if_sensor_error || !enough_water {
state.no_water = true;
}
}
let duration = Duration::minutes((60 * plant_config.pump_cooldown_min).into());
let next_pump = board.last_pump_time(plant) + duration;
if next_pump > cur {
state.cooldown = true;
}
if !in_time_range(cur, plant_config.pump_hour_start, plant_config.pump_hour_end) {
state.out_of_work_hour = true;
}
if(state.dry && !state.no_water && !state.cooldown && !state.out_of_work_hour){
state.do_water = true;
}
},
config::Mode::TimerOnly => {
let duration = Duration::minutes((60 * plant_config.pump_cooldown_min).into());
let next_pump = board.last_pump_time(plant) + duration;
if next_pump > cur {
state.cooldown = true;
} else {
state.do_water = true;
}
},
config::Mode::TimerAndDeadzone => {
let duration = Duration::minutes((60 * plant_config.pump_cooldown_min).into());
let next_pump = board.last_pump_time(plant) + duration;
if next_pump > cur {
state.cooldown = true;
}
if !in_time_range(cur, plant_config.pump_hour_start, plant_config.pump_hour_end) {
state.out_of_work_hour = true;
}
if(!state.cooldown && !state.out_of_work_hour){
state.do_water = true;
}
},
}
//FIXME publish state here!
if state.do_water{
if board.consecutive_pump_count(plant) > config.max_consecutive_pump_count.into() {
state.not_effective = true;
board.fault(plant, true);
}
} else {
board.store_consecutive_pump_count(plant, 0);
}
println!("Plant {} state is {:?}", plant, state);
}
for plant in 0..PLANT_COUNT {
let state = &plantstate[plant];
println!("Checking for water plant {} with state {}", plant, state.do_water);
if state.do_water {
return Some(plant);
}
}
println!("No plant needs water");
return None
} }
fn main() -> Result<()> { fn main() -> Result<()> {
@ -129,8 +259,8 @@ fn main() -> Result<()> {
println!("Version useing git has {}", git_hash); println!("Version useing git has {}", git_hash);
let mut partition_state: embedded_svc::ota::SlotState = embedded_svc::ota::SlotState::Unknown; let mut partition_state: embedded_svc::ota::SlotState = embedded_svc::ota::SlotState::Unknown;
// match esp_idf_svc::ota::EspOta::new() { match esp_idf_svc::ota::EspOta::new() {
// Ok(ota) => { Ok(ota) => {
// match ota.get_running_slot(){ // match ota.get_running_slot(){
// Ok(slot) => { // Ok(slot) => {
// partition_state = slot.state; // partition_state = slot.state;
@ -143,14 +273,15 @@ fn main() -> Result<()> {
// println!("Error getting running slot {}", err); // println!("Error getting running slot {}", err);
// }, // },
// } // }
// }, },
// Err(err) => { Err(err) => {
// println!("Error obtaining ota info {}", err); println!("Error obtaining ota info {}", err);
// }, },
// } }
println!("Board hal init"); println!("Board hal init");
let mut board: std::sync::MutexGuard<'_, PlantCtrlBoard<'_>> = BOARD_ACCESS.lock().unwrap(); let mut board: std::sync::MutexGuard<'_, PlantCtrlBoard<'_>> = BOARD_ACCESS.lock().unwrap();
board.disable_all()?;
println!("Mounting filesystem"); println!("Mounting filesystem");
board.mount_file_system()?; board.mount_file_system()?;
let free_space = board.file_system_size()?; let free_space = board.file_system_size()?;
@ -257,10 +388,11 @@ fn main() -> Result<()> {
board.general_fault(true); board.general_fault(true);
} }
} }
}
println!("Running logic at utc {}", cur); println!("Running logic at utc {}", cur);
let europe_time = cur.with_timezone(&Berlin); let europe_time = cur.with_timezone(&Berlin);
println!("Running logic at europe/berlin {}", europe_time); println!("Running logic at europe/berlin {}", europe_time);
}
let config: Config; let config: Config;
match board.get_config() { match board.get_config() {
@ -298,20 +430,21 @@ fn main() -> Result<()> {
} }
let mut enough_water = true; let mut enough_water = true;
let mut tank_sensor_error = false;
if config.tank_sensor_enabled { if config.tank_sensor_enabled {
let tank_value = board.tank_sensor_mv(); let mut tank_value_r = 0;
match tank_value {
Ok(tank_raw) => { let success = board.tank_sensor_mv().and_then(|raw| {
//FIXME clear tank_value_r = raw;
let percent = map_range( return map_range(
(config.tank_empty_mv, config.tank_full_mv), (config.tank_empty_mv as f32, config.tank_full_mv as f32),
(0_f32, 100_f32), raw as f32,
tank_raw.into(),
); );
}).and_then(|percent| {
let left_ml = ((percent / 100_f32) * config.tank_useable_ml as f32) as u32; let left_ml = ((percent / 100_f32) * config.tank_useable_ml as f32) as u32;
println!( println!(
"Tank sensor returned mv {} as {}% leaving {} ml useable", "Tank sensor returned mv {} as {}% leaving {} ml useable",
tank_raw, percent as u8, left_ml tank_value_r, percent as u8, left_ml
); );
if config.tank_warn_percent > percent as u8 { if config.tank_warn_percent > percent as u8 {
board.general_fault(true); board.general_fault(true);
@ -319,71 +452,44 @@ fn main() -> Result<()> {
"Low water, current percent is {}, minimum warn level is {}", "Low water, current percent is {}, minimum warn level is {}",
percent as u8, config.tank_warn_percent percent as u8, config.tank_warn_percent
); );
//FIXME warn here
} }
if config.tank_warn_percent <= 0 { if config.tank_warn_percent <= 0 {
enough_water = false; enough_water = false;
} }
} return Ok(());
Err(_) => { });
match success {
Err(err) => {
println!("Could not determine tank value due to {}", err);
board.general_fault(true); board.general_fault(true);
if !config.tank_allow_pumping_if_sensor_error { tank_sensor_error = true;
enough_water = false;
}
//set tank sensor state to fault
} }
Ok(_) => {},
} }
} }
let plantstate = [PlantState { let mut water_frozen = false;
for _attempt in 0..5 {
let water_temperature = board.water_temperature_c();
match water_temperature {
Ok(temp) => {
//FIXME mqtt here
println!("Water temp is {}", temp);
if(temp < 4_f32){
water_frozen = true;
}
break;
},
Err(err) => {
println!("Could not get water temp {}", err)
},
}
}
let mut plantstate = [PlantState {
..Default::default() ..Default::default()
}; PLANT_COUNT]; }; PLANT_COUNT];
for plant in 0..PLANT_COUNT { let plant_to_pump = determine_next_plant(&mut plantstate, europe_time, enough_water, tank_sensor_error, &config, &mut board);
let mut state = plantstate[plant];
//return mapf(mMoisture_raw.getMedian(), MOIST_SENSOR_MIN_FRQ, MOIST_SENSOR_MAX_FRQ, 0, 100);
state.a = map_range(
FROM,
TO,
board.measure_moisture_hz(plant, plant_hal::Sensor::A)? as f32,
) as u8;
state.b = map_range(
FROM,
TO,
board.measure_moisture_hz(plant, plant_hal::Sensor::B)? as f32,
) as u8;
state.p = map_range(
FROM,
TO,
board.measure_moisture_hz(plant, plant_hal::Sensor::PUMP)? as f32,
) as u8;
let plant_config = config.plants[plant];
//FIXME how to average analyze whatever?
if state.a < plant_config.target_moisture || state.b < plant_config.target_moisture {
state.dry = true;
if !enough_water {
state.no_water = true;
}
}
let duration = Duration::minutes((60 * plant_config.pump_cooldown_min).into());
if (board.last_pump_time(plant)? + duration) > cur {
state.cooldown = true;
}
if state.dry {
let consecutive_pump_count = board.consecutive_pump_count(plant) + 1;
board.store_consecutive_pump_count(plant, consecutive_pump_count);
if consecutive_pump_count > config.max_consecutive_pump_count.into() {
state.not_effective = true;
board.fault(plant, true);
}
} else {
board.store_consecutive_pump_count(plant, 0);
}
//TODO update mqtt state here!
}
if STAY_ALIVE.load(std::sync::atomic::Ordering::Relaxed) { if STAY_ALIVE.load(std::sync::atomic::Ordering::Relaxed) {
drop(board); drop(board);
@ -392,29 +498,39 @@ fn main() -> Result<()> {
wait_infinity(WaitType::StayAlive, reboot_now.clone()); wait_infinity(WaitType::StayAlive, reboot_now.clone());
} }
'eachplant: for plant in 0..PLANT_COUNT { match plant_to_pump {
Some(plant) => {
let mut state = plantstate[plant]; let mut state = plantstate[plant];
if state.dry && !state.cooldown { let consecutive_pump_count = board.consecutive_pump_count(plant) + 1;
println!("Trying to pump with pump {} now", plant); board.store_consecutive_pump_count(plant, consecutive_pump_count);
let plant_config = config.plants[plant]; let plant_config = config.plants[plant];
println!("Trying to pump for {}s with pump {} now", plant_config.pump_time_s,plant);
board.any_pump(true)?; board.any_pump(true)?;
board.store_last_pump_time(plant, cur); board.store_last_pump_time(plant, cur);
board.pump(plant, true)?; board.pump(plant, true)?;
board.last_pump_time(plant)?; board.last_pump_time(plant);
state.active = true; state.active = true;
unsafe { vTaskDelay(plant_config.pump_time_s.into()) }; //FIXME do periodic pump test here and state update
state.after_p = map_range( unsafe { vTaskDelay(plant_config.pump_time_s as u32*CONFIG_FREERTOS_HZ) };
FROM, match map_range_moisture(board.measure_moisture_hz(plant, plant_hal::Sensor::PUMP)? as f32) {
TO, Ok(p) => state.after_p = Some(p),
board.measure_moisture_hz(plant, plant_hal::Sensor::PUMP)? as f32, Err(err) => {
) as u8; board.fault(plant, true);
if state.after_p < state.p + 5 { println!("Could not determine Moisture P after for plant {} due to {}", plant, err);
state.after_p = None;
state.sensor_error_p = true;
}
}
if state.after_p.is_none() || state.p.is_none() || state.after_p.unwrap() < state.p.unwrap() + 5 {
state.pump_error = true; state.pump_error = true;
board.fault(plant, true); board.fault(plant, true);
} }
break 'eachplant; },
None => {
println!("Nothing to do");
} }
,
} }
/* /*
@ -437,6 +553,7 @@ fn main() -> Result<()> {
} }
*/ */
//deepsleep here? //deepsleep here?
unsafe { esp_deep_sleep(1000*1000*10) };
Ok(()) Ok(())
} }

View File

@ -143,7 +143,7 @@ pub trait PlantCtrlBoardInteraction {
fn measure_moisture_hz(&self, plant: usize, sensor: Sensor) -> Result<i32>; fn measure_moisture_hz(&self, plant: usize, sensor: Sensor) -> Result<i32>;
fn pump(&self, plant: usize, enable: bool) -> Result<()>; fn pump(&self, plant: usize, enable: bool) -> Result<()>;
fn last_pump_time(&self, plant: usize) -> Result<chrono::DateTime<Utc>>; fn last_pump_time(&self, plant: usize) -> chrono::DateTime<Utc>;
fn store_last_pump_time(&mut self, plant: usize, time: chrono::DateTime<Utc>); fn store_last_pump_time(&mut self, plant: usize, time: chrono::DateTime<Utc>);
fn store_consecutive_pump_count(&mut self, plant: usize, count: u32); fn store_consecutive_pump_count(&mut self, plant: usize, count: u32);
fn consecutive_pump_count(&mut self, plant: usize) -> u32; fn consecutive_pump_count(&mut self, plant: usize) -> u32;
@ -163,6 +163,7 @@ pub trait PlantCtrlBoardInteraction {
fn test(&mut self) -> Result<()>; fn test(&mut self) -> Result<()>;
fn is_wifi_config_file_existant(&mut self) -> bool; fn is_wifi_config_file_existant(&mut self) -> bool;
fn mqtt(&mut self, config: &Config) -> Result<()>; fn mqtt(&mut self, config: &Config) -> Result<()>;
fn disable_all(&mut self) -> Result<()>;
} }
pub trait CreatePlantHal<'a> { pub trait CreatePlantHal<'a> {
@ -230,7 +231,7 @@ impl PlantCtrlBoardInteraction for PlantCtrlBoard<'_> {
if sensor_data.temperature == 85_f32 { if sensor_data.temperature == 85_f32 {
bail!("Ds18b20 dummy temperature returned"); bail!("Ds18b20 dummy temperature returned");
} }
Ok(sensor_data.temperature) Ok(sensor_data.temperature/10_f32)
} }
fn tank_sensor_mv(&mut self) -> Result<u16> { fn tank_sensor_mv(&mut self) -> Result<u16> {
@ -265,11 +266,10 @@ impl PlantCtrlBoardInteraction for PlantCtrlBoard<'_> {
Ok(()) Ok(())
} }
fn last_pump_time(&self, plant: usize) -> Result<chrono::DateTime<Utc>> { fn last_pump_time(&self, plant: usize) -> chrono::DateTime<Utc> {
let ts = unsafe { LAST_WATERING_TIMESTAMP }[plant]; let ts = unsafe { LAST_WATERING_TIMESTAMP }[plant];
let timestamp = NaiveDateTime::from_timestamp_millis(ts) let timestamp = NaiveDateTime::from_timestamp_millis(ts).unwrap();
.ok_or(anyhow!("could not convert timestamp"))?; DateTime::<Utc>::from_naive_utc_and_offset(timestamp, Utc)
Ok(DateTime::<Utc>::from_naive_utc_and_offset(timestamp, Utc))
} }
fn store_last_pump_time(&mut self, plant: usize, time: chrono::DateTime<Utc>) { fn store_last_pump_time(&mut self, plant: usize, time: chrono::DateTime<Utc>) {
@ -660,6 +660,15 @@ impl PlantCtrlBoardInteraction for PlantCtrlBoard<'_> {
} }
bail!("Mqtt did not complete roundtrip in time"); bail!("Mqtt did not complete roundtrip in time");
} }
fn disable_all(&mut self) -> Result<()> {
for mut pin in self.shift_register.decompose() {
pin.set_low().unwrap();
}
self.general_fault(false);
self.any_pump(false)?;
return Ok(());
}
} }
impl CreatePlantHal<'_> for PlantHal { impl CreatePlantHal<'_> for PlantHal {