Read ultrasonnic sensor 5 times

This commit is contained in:
Ollo 2020-11-11 21:33:11 +01:00
parent e583122a10
commit 8adf4d6f0d

View File

@ -21,37 +21,37 @@
const unsigned long TEMPREADCYCLE = 30000; /**< Check temperature all half minutes */ const unsigned long TEMPREADCYCLE = 30000; /**< Check temperature all half minutes */
#define AMOUNT_SENOR_QUERYS 8 #define AMOUNT_SENOR_QUERYS 8
#define SENSOR_QUERY_SHIFTS 3 #define SENSOR_QUERY_SHIFTS 3
#define SOLAR4SENSORS 6.0f #define SOLAR4SENSORS 6.0f
#define TEMP_INIT_VALUE -999.0f #define TEMP_INIT_VALUE -999.0f
#define TEMP_MAX_VALUE 85.0f #define TEMP_MAX_VALUE 85.0f
/********************* non volatile enable after deepsleep *******************************/ /********************* non volatile enable after deepsleep *******************************/
RTC_DATA_ATTR long gotoMode2AfterThisTimestamp = 0; RTC_DATA_ATTR long gotoMode2AfterThisTimestamp = 0;
RTC_DATA_ATTR long rtcDeepSleepTime = 0; /**< Time, when the microcontroller shall be up again */ RTC_DATA_ATTR long rtcDeepSleepTime = 0; /**< Time, when the microcontroller shall be up again */
RTC_DATA_ATTR long rtcLastActive0 = 0; RTC_DATA_ATTR long rtcLastActive0 = 0;
RTC_DATA_ATTR long rtcMoistureTrigger0 = 0; /**<Level for the moisture sensor */ RTC_DATA_ATTR long rtcMoistureTrigger0 = 0; /**<Level for the moisture sensor */
RTC_DATA_ATTR long rtcLastActive1 = 0; RTC_DATA_ATTR long rtcLastActive1 = 0;
RTC_DATA_ATTR long rtcMoistureTrigger1 = 0; /**<Level for the moisture sensor */ RTC_DATA_ATTR long rtcMoistureTrigger1 = 0; /**<Level for the moisture sensor */
RTC_DATA_ATTR long rtcLastActive2 = 0; RTC_DATA_ATTR long rtcLastActive2 = 0;
RTC_DATA_ATTR long rtcMoistureTrigger2 = 0; /**<Level for the moisture sensor */ RTC_DATA_ATTR long rtcMoistureTrigger2 = 0; /**<Level for the moisture sensor */
RTC_DATA_ATTR long rtcLastActive3 = 0; RTC_DATA_ATTR long rtcLastActive3 = 0;
RTC_DATA_ATTR long rtcMoistureTrigger3 = 0; /**<Level for the moisture sensor */ RTC_DATA_ATTR long rtcMoistureTrigger3 = 0; /**<Level for the moisture sensor */
RTC_DATA_ATTR long rtcLastActive4 = 0; RTC_DATA_ATTR long rtcLastActive4 = 0;
RTC_DATA_ATTR long rtcMoistureTrigger4 = 0; /**<Level for the moisture sensor */ RTC_DATA_ATTR long rtcMoistureTrigger4 = 0; /**<Level for the moisture sensor */
RTC_DATA_ATTR long rtcLastActive5 = 0; RTC_DATA_ATTR long rtcLastActive5 = 0;
RTC_DATA_ATTR long rtcMoistureTrigger5 = 0; /**<Level for the moisture sensor */ RTC_DATA_ATTR long rtcMoistureTrigger5 = 0; /**<Level for the moisture sensor */
RTC_DATA_ATTR long rtcLastActive6 = 0; RTC_DATA_ATTR long rtcLastActive6 = 0;
RTC_DATA_ATTR long rtcMoistureTrigger6 = 0; /**<Level for the moisture sensor */ RTC_DATA_ATTR long rtcMoistureTrigger6 = 0; /**<Level for the moisture sensor */
RTC_DATA_ATTR int lastPumpRunning = 0; RTC_DATA_ATTR int lastPumpRunning = 0;
RTC_DATA_ATTR long lastWaterValue = 0; RTC_DATA_ATTR long lastWaterValue = 0;
const char* ntpServer = "pool.ntp.org"; const char *ntpServer = "pool.ntp.org";
bool warmBoot = true; bool warmBoot = true;
bool mode3Active = false; /**< Controller must not sleep */ bool mode3Active = false; /**< Controller must not sleep */
bool mDeepsleep = false; bool mDeepsleep = false;
int plantSensor1 = 0; int plantSensor1 = 0;
@ -59,7 +59,6 @@ int plantSensor1 = 0;
int readCounter = 0; int readCounter = 0;
bool mConfigured = false; bool mConfigured = false;
auto wait4sleep = timer_create_default(); // create a timer with default settings auto wait4sleep = timer_create_default(); // create a timer with default settings
RTC_DATA_ATTR int gBootCount = 0; RTC_DATA_ATTR int gBootCount = 0;
@ -71,28 +70,29 @@ RunningMedian waterRawSensor = RunningMedian(5);
RunningMedian temp1 = RunningMedian(5); RunningMedian temp1 = RunningMedian(5);
RunningMedian temp2 = RunningMedian(5); RunningMedian temp2 = RunningMedian(5);
Ds18B20 dallas(SENSOR_DS18B20); Ds18B20 dallas(SENSOR_DS18B20);
Plant mPlants[MAX_PLANTS] = { Plant mPlants[MAX_PLANTS] = {
Plant(SENSOR_PLANT0, OUTPUT_PUMP0, 0, &plant0, &mSetting0), Plant(SENSOR_PLANT0, OUTPUT_PUMP0, 0, &plant0, &mSetting0),
Plant(SENSOR_PLANT1, OUTPUT_PUMP1, 1, &plant1, &mSetting1), Plant(SENSOR_PLANT1, OUTPUT_PUMP1, 1, &plant1, &mSetting1),
Plant(SENSOR_PLANT2, OUTPUT_PUMP2, 2, &plant2, &mSetting2), Plant(SENSOR_PLANT2, OUTPUT_PUMP2, 2, &plant2, &mSetting2),
Plant(SENSOR_PLANT3, OUTPUT_PUMP3, 3, &plant3, &mSetting3), Plant(SENSOR_PLANT3, OUTPUT_PUMP3, 3, &plant3, &mSetting3),
Plant(SENSOR_PLANT4, OUTPUT_PUMP4, 4, &plant4, &mSetting4), Plant(SENSOR_PLANT4, OUTPUT_PUMP4, 4, &plant4, &mSetting4),
Plant(SENSOR_PLANT5, OUTPUT_PUMP5, 5, &plant5, &mSetting5), Plant(SENSOR_PLANT5, OUTPUT_PUMP5, 5, &plant5, &mSetting5),
Plant(SENSOR_PLANT6, OUTPUT_PUMP6, 6, &plant6, &mSetting6) Plant(SENSOR_PLANT6, OUTPUT_PUMP6, 6, &plant6, &mSetting6)};
};
float getBatteryVoltage(){ float getBatteryVoltage()
{
return ADC_5V_TO_3V3(lipoRawSensor.getAverage()); return ADC_5V_TO_3V3(lipoRawSensor.getAverage());
} }
float getSolarVoltage(){ float getSolarVoltage()
{
return SOLAR_VOLT(solarRawSensor.getAverage()); return SOLAR_VOLT(solarRawSensor.getAverage());
} }
void readSystemSensors() { void readSystemSensors()
{
lipoRawSensor.add(analogRead(SENSOR_LIPO)); lipoRawSensor.add(analogRead(SENSOR_LIPO));
solarRawSensor.add(analogRead(SENSOR_SOLAR)); solarRawSensor.add(analogRead(SENSOR_SOLAR));
} }
@ -100,209 +100,255 @@ void readSystemSensors() {
int determineNextPump(); int determineNextPump();
void setLastActivationForPump(int pumpId, long time); void setLastActivationForPump(int pumpId, long time);
long getCurrentTime()
long getCurrentTime(){ {
struct timeval tv_now; struct timeval tv_now;
gettimeofday(&tv_now, NULL); gettimeofday(&tv_now, NULL);
return tv_now.tv_sec; return tv_now.tv_sec;
} }
//wait till homie flushed mqtt ect. //wait till homie flushed mqtt ect.
bool prepareSleep(void *) { bool prepareSleep(void *)
{
//FIXME wait till pending mqtt is done, then start sleep via event or whatever //FIXME wait till pending mqtt is done, then start sleep via event or whatever
//Homie.disableResetTrigger(); //Homie.disableResetTrigger();
bool queueIsEmpty = true; bool queueIsEmpty = true;
if(queueIsEmpty){ if (queueIsEmpty)
{
mDeepsleep = true; mDeepsleep = true;
} }
return false; // repeat? true there is something in the queue to be done return false; // repeat? true there is something in the queue to be done
} }
void espDeepSleepFor(long seconds, bool activatePump = false){ void espDeepSleepFor(long seconds, bool activatePump = false)
{
delay(1500); delay(1500);
esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_PERIPH, ESP_PD_OPTION_OFF); esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_PERIPH, ESP_PD_OPTION_OFF);
esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_FAST_MEM, ESP_PD_OPTION_OFF); esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_FAST_MEM, ESP_PD_OPTION_OFF);
esp_sleep_pd_config(ESP_PD_DOMAIN_XTAL,ESP_PD_OPTION_ON); esp_sleep_pd_config(ESP_PD_DOMAIN_XTAL, ESP_PD_OPTION_ON);
if (activatePump) { if (activatePump)
{
esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_SLOW_MEM, ESP_PD_OPTION_ON); esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_SLOW_MEM, ESP_PD_OPTION_ON);
gpio_deep_sleep_hold_en(); gpio_deep_sleep_hold_en();
gpio_hold_en(GPIO_NUM_13); //pump pwr gpio_hold_en(GPIO_NUM_13); //pump pwr
} else { }
else
{
esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_SLOW_MEM, ESP_PD_OPTION_OFF); esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_SLOW_MEM, ESP_PD_OPTION_OFF);
gpio_hold_dis(GPIO_NUM_13); //pump pwr gpio_hold_dis(GPIO_NUM_13); //pump pwr
gpio_deep_sleep_hold_dis(); gpio_deep_sleep_hold_dis();
digitalWrite(OUTPUT_PUMP, LOW); digitalWrite(OUTPUT_PUMP, LOW);
for (int i=0; i < MAX_PLANTS; i++) { for (int i = 0; i < MAX_PLANTS; i++)
{
mPlants[i].deactivatePump(); mPlants[i].deactivatePump();
} }
} }
//gpio_hold_en(GPIO_NUM_23); //p0 //gpio_hold_en(GPIO_NUM_23); //p0
//FIXME fix for outher outputs //FIXME fix for outher outputs
Serial.print("Going to sleep for "); Serial.print("Going to sleep for ");
Serial.print(seconds); Serial.print(seconds);
Serial.println(" seconds"); Serial.println(" seconds");
esp_sleep_enable_timer_wakeup( (seconds * 1000U * 1000U) ); esp_sleep_enable_timer_wakeup((seconds * 1000U * 1000U));
wait4sleep.in(500, prepareSleep); wait4sleep.in(500, prepareSleep);
} }
void mode2MQTT()
{
void mode2MQTT(){
readSystemSensors(); readSystemSensors();
configTime(0, 0, ntpServer); configTime(0, 0, ntpServer);
digitalWrite(OUTPUT_PUMP, LOW); digitalWrite(OUTPUT_PUMP, LOW);
for (int i=0; i < MAX_PLANTS; i++) { for (int i = 0; i < MAX_PLANTS; i++)
{
mPlants[i].deactivatePump(); mPlants[i].deactivatePump();
} }
if (deepSleepTime.get()) { if (deepSleepTime.get())
{
Serial << "sleeping for " << deepSleepTime.get() << endl; Serial << "sleeping for " << deepSleepTime.get() << endl;
} }
/* Publish default values */ /* Publish default values */
if(lastPumpRunning != -1){ if (lastPumpRunning != -1)
{
long waterDiff = waterRawSensor.getAverage() - lastWaterValue; long waterDiff = waterRawSensor.getAverage() - lastWaterValue;
//TODO attribute used water in ml to plantid //TODO attribute used water in ml to plantid
} }
for(int i=0; i < MAX_PLANTS; i++) { for (int i = 0; i < MAX_PLANTS; i++)
mPlants[i].setProperty("moist").send(String(100 * mPlants[i].getSensorValue() / 4095 )); {
mPlants[i].setProperty("moist").send(String(100 * mPlants[i].getSensorValue() / 4095));
} }
sensorWater.setProperty("remaining").send(String(waterLevelMax.get() - waterRawSensor.getAverage() )); sensorWater.setProperty("remaining").send(String(waterLevelMax.get() - waterRawSensor.getAverage()));
Serial << "W : " << waterRawSensor.getAverage() << " cm (" << String(waterLevelMax.get() - waterRawSensor.getAverage() ) << "%)" << endl; Serial << "W : " << waterRawSensor.getAverage() << " cm (" << String(waterLevelMax.get() - waterRawSensor.getAverage()) << "%)" << endl;
lastWaterValue = waterRawSensor.getAverage(); lastWaterValue = waterRawSensor.getAverage();
sensorLipo.setProperty("percent").send( String(100 * lipoRawSensor.getAverage() / 4095) ); sensorLipo.setProperty("percent").send(String(100 * lipoRawSensor.getAverage() / 4095));
sensorLipo.setProperty("volt").send( String(getBatteryVoltage()) ); sensorLipo.setProperty("volt").send(String(getBatteryVoltage()));
sensorSolar.setProperty("percent").send(String((100 * solarRawSensor.getAverage() ) / 4095)); sensorSolar.setProperty("percent").send(String((100 * solarRawSensor.getAverage()) / 4095));
sensorSolar.setProperty("volt").send( String(getSolarVoltage()) ); sensorSolar.setProperty("volt").send(String(getSolarVoltage()));
float temp[2] = { TEMP_INIT_VALUE, TEMP_INIT_VALUE }; float temp[2] = {TEMP_INIT_VALUE, TEMP_INIT_VALUE};
float* pFloat = temp; float *pFloat = temp;
int devices = dallas.readAllTemperatures(pFloat, 2); int devices = dallas.readAllTemperatures(pFloat, 2);
if (devices < 2) { if (devices < 2)
if ((pFloat[0] > TEMP_INIT_VALUE) && (pFloat[0] < TEMP_MAX_VALUE) ) { {
sensorTemp.setProperty("control").send( String(pFloat[0])); if ((pFloat[0] > TEMP_INIT_VALUE) && (pFloat[0] < TEMP_MAX_VALUE))
} {
} else if (devices >= 2) { sensorTemp.setProperty("control").send(String(pFloat[0]));
if ((pFloat[0] > TEMP_INIT_VALUE) && (pFloat[0] < TEMP_MAX_VALUE) ) {
sensorTemp.setProperty("temp").send( String(pFloat[0]));
} }
if ((pFloat[1] > TEMP_INIT_VALUE) && (pFloat[1] < TEMP_MAX_VALUE) ) { }
sensorTemp.setProperty("control").send( String(pFloat[1])); else if (devices >= 2)
{
if ((pFloat[0] > TEMP_INIT_VALUE) && (pFloat[0] < TEMP_MAX_VALUE))
{
sensorTemp.setProperty("temp").send(String(pFloat[0]));
}
if ((pFloat[1] > TEMP_INIT_VALUE) && (pFloat[1] < TEMP_MAX_VALUE))
{
sensorTemp.setProperty("control").send(String(pFloat[1]));
} }
} }
bool lipoTempWarning = abs(temp[0] - temp[1]) > 5; bool lipoTempWarning = abs(temp[0] - temp[1]) > 5;
if(lipoTempWarning){ if (lipoTempWarning)
{
Serial.println("Lipo temp incorrect, panic mode deepsleep"); Serial.println("Lipo temp incorrect, panic mode deepsleep");
espDeepSleepFor(PANIK_MODE_DEEPSLEEP); espDeepSleepFor(PANIK_MODE_DEEPSLEEP);
return; return;
} }
bool hasWater = true;//FIXMEmWaterGone > waterLevelMin.get(); bool hasWater = true; //FIXMEmWaterGone > waterLevelMin.get();
//FIXME no water warning message //FIXME no water warning message
lastPumpRunning = determineNextPump(); lastPumpRunning = determineNextPump();
if(lastPumpRunning != -1 && !hasWater){ if (lastPumpRunning != -1 && !hasWater)
{
Serial.println("Want to pump but no water"); Serial.println("Want to pump but no water");
} }
if(lastPumpRunning != -1 && hasWater){ if (lastPumpRunning != -1 && hasWater)
{
digitalWrite(OUTPUT_PUMP, HIGH); digitalWrite(OUTPUT_PUMP, HIGH);
setLastActivationForPump(lastPumpRunning, getCurrentTime()); setLastActivationForPump(lastPumpRunning, getCurrentTime());
mPlants[lastPumpRunning].activatePump(); mPlants[lastPumpRunning].activatePump();
} }
if(lastPumpRunning == -1 || !hasWater){ if (lastPumpRunning == -1 || !hasWater)
if(getSolarVoltage() < SOLAR_CHARGE_MIN_VOLTAGE){ {
gotoMode2AfterThisTimestamp = getCurrentTime()+deepSleepNightTime.get(); if (getSolarVoltage() < SOLAR_CHARGE_MIN_VOLTAGE)
{
gotoMode2AfterThisTimestamp = getCurrentTime() + deepSleepNightTime.get();
Serial.println("No pumps to activate and low light, deepSleepNight"); Serial.println("No pumps to activate and low light, deepSleepNight");
espDeepSleepFor(deepSleepNightTime.get()); espDeepSleepFor(deepSleepNightTime.get());
}else { }
gotoMode2AfterThisTimestamp = getCurrentTime()+deepSleepTime.get(); else
{
gotoMode2AfterThisTimestamp = getCurrentTime() + deepSleepTime.get();
Serial.println("No pumps to activate, deepSleep"); Serial.println("No pumps to activate, deepSleep");
espDeepSleepFor(deepSleepTime.get()); espDeepSleepFor(deepSleepTime.get());
} }
}
}else { else
{
gotoMode2AfterThisTimestamp = 0; gotoMode2AfterThisTimestamp = 0;
Serial.println("Running pump, watering deepsleep"); Serial.println("Running pump, watering deepsleep");
espDeepSleepFor(wateringDeepSleep.get(), true); espDeepSleepFor(wateringDeepSleep.get(), true);
} }
} }
void setMoistureTrigger(int plantId, long value){ void setMoistureTrigger(int plantId, long value)
if(plantId == 0){ {
if (plantId == 0)
{
rtcMoistureTrigger0 = value; rtcMoistureTrigger0 = value;
} }
if(plantId == 1){ if (plantId == 1)
{
rtcMoistureTrigger1 = value; rtcMoistureTrigger1 = value;
} }
if(plantId == 2){ if (plantId == 2)
{
rtcMoistureTrigger2 = value; rtcMoistureTrigger2 = value;
} }
if(plantId == 3){ if (plantId == 3)
{
rtcMoistureTrigger3 = value; rtcMoistureTrigger3 = value;
} }
if(plantId == 4){ if (plantId == 4)
{
rtcMoistureTrigger4 = value; rtcMoistureTrigger4 = value;
} }
if(plantId == 5){ if (plantId == 5)
{
rtcMoistureTrigger5 = value; rtcMoistureTrigger5 = value;
} }
if(plantId == 6){ if (plantId == 6)
{
rtcMoistureTrigger6 = value; rtcMoistureTrigger6 = value;
} }
} }
void setLastActivationForPump(int plantId, long value){ void setLastActivationForPump(int plantId, long value)
if(plantId == 0){ {
if (plantId == 0)
{
rtcLastActive0 = value; rtcLastActive0 = value;
} }
if(plantId == 1){ if (plantId == 1)
{
rtcLastActive1 = value; rtcLastActive1 = value;
} }
if(plantId == 2){ if (plantId == 2)
{
rtcLastActive2 = value; rtcLastActive2 = value;
} }
if(plantId == 3){ if (plantId == 3)
{
rtcLastActive3 = value; rtcLastActive3 = value;
} }
if(plantId == 4){ if (plantId == 4)
{
rtcLastActive4 = value; rtcLastActive4 = value;
} }
if(plantId == 5){ if (plantId == 5)
{
rtcLastActive5 = value; rtcLastActive5 = value;
} }
if(plantId == 6){ if (plantId == 6)
{
rtcLastActive6 = value; rtcLastActive6 = value;
} }
} }
long getLastActivationForPump(int plantId){ long getLastActivationForPump(int plantId)
if(plantId == 0){ {
if (plantId == 0)
{
return rtcLastActive0; return rtcLastActive0;
} }
if(plantId == 1){ if (plantId == 1)
{
return rtcLastActive1; return rtcLastActive1;
} }
if(plantId == 2){ if (plantId == 2)
{
return rtcLastActive2; return rtcLastActive2;
} }
if(plantId == 3){ if (plantId == 3)
{
return rtcLastActive3; return rtcLastActive3;
} }
if(plantId == 4){ if (plantId == 4)
{
return rtcLastActive4; return rtcLastActive4;
} }
if(plantId == 5){ if (plantId == 5)
{
return rtcLastActive5; return rtcLastActive5;
} }
if(plantId == 6){ if (plantId == 6)
{
return rtcLastActive6; return rtcLastActive6;
} }
return -1; return -1;
@ -312,7 +358,8 @@ long getLastActivationForPump(int plantId){
* @brief Sensors, that are connected to GPIOs, mandatory for WIFI. * @brief Sensors, that are connected to GPIOs, mandatory for WIFI.
* These sensors (ADC2) can only be read when no Wifi is used. * These sensors (ADC2) can only be read when no Wifi is used.
*/ */
void readSensors() { void readSensors()
{
Serial << "Read Sensors" << endl; Serial << "Read Sensors" << endl;
readSystemSensors(); readSystemSensors();
@ -323,8 +370,10 @@ void readSensors() {
delay(100); delay(100);
/* wait before reading something */ /* wait before reading something */
for (int readCnt=0;readCnt < AMOUNT_SENOR_QUERYS; readCnt++) { for (int readCnt = 0; readCnt < AMOUNT_SENOR_QUERYS; readCnt++)
for(int i=0; i < MAX_PLANTS; i++) { {
for (int i = 0; i < MAX_PLANTS; i++)
{
mPlants[i].addSenseValue(); mPlants[i].addSenseValue();
} }
} }
@ -334,16 +383,18 @@ void readSensors() {
Serial << "DS18B20" << String(dallas.readDevices()) << endl; Serial << "DS18B20" << String(dallas.readDevices()) << endl;
delay(200); delay(200);
/* Required to read the temperature once */ /* Required to read the temperature once */
float temp[2] = {0, 0}; float temp[2] = {0, 0};
float* pFloat = temp; float *pFloat = temp;
for(int i=0; i < 10; i++) { for (int i = 0; i < 10; i++)
if (dallas.readAllTemperatures(pFloat, 2) > 0) { {
if (dallas.readAllTemperatures(pFloat, 2) > 0)
{
Serial << "t1: " << String(temp[0]) << endl; Serial << "t1: " << String(temp[0]) << endl;
Serial << "t2: " << String(temp[1]) << endl; Serial << "t2: " << String(temp[1]) << endl;
// first read returns crap, ignore result and read again // first read returns crap, ignore result and read again
if (i <= 2) { if (i <= 2)
{
temp1.add(temp[0]); temp1.add(temp[0]);
temp2.add(temp[1]); temp2.add(temp[1]);
} }
@ -352,81 +403,93 @@ void readSensors() {
} }
/* Use the Ultrasonic sensor to measure waterLevel */ /* Use the Ultrasonic sensor to measure waterLevel */
for (int i = 0; i < 5; i++)
digitalWrite(SENSOR_SR04_TRIG, LOW); {
delayMicroseconds(2); digitalWrite(SENSOR_SR04_TRIG, LOW);
digitalWrite(SENSOR_SR04_TRIG, HIGH); delayMicroseconds(2);
delayMicroseconds(10); digitalWrite(SENSOR_SR04_TRIG, HIGH);
digitalWrite(SENSOR_SR04_TRIG, LOW); delayMicroseconds(10);
float duration = pulseIn(SENSOR_SR04_ECHO, HIGH); digitalWrite(SENSOR_SR04_TRIG, LOW);
waterRawSensor.add((duration*.343)/2); float duration = pulseIn(SENSOR_SR04_ECHO, HIGH);
Serial << "Distance sensor " << duration << " ms : " << waterRawSensor.getAverage() << " cm" << endl; waterRawSensor.add((duration * .343) / 2);
Serial << "Distance sensor " << duration << " ms : " << waterRawSensor.getAverage() << " cm" << endl;
delay(20);
}
/* deactivate the sensors */ /* deactivate the sensors */
digitalWrite(OUTPUT_SENSOR, LOW); digitalWrite(OUTPUT_SENSOR, LOW);
} }
//Homie.getMqttClient().disconnect(); //Homie.getMqttClient().disconnect();
void onHomieEvent(const HomieEvent& event) { void onHomieEvent(const HomieEvent &event)
switch(event.type) { {
case HomieEventType::SENDING_STATISTICS: switch (event.type)
Homie.getLogger() << "My statistics" << endl; {
break; case HomieEventType::SENDING_STATISTICS:
case HomieEventType::MQTT_READY: Homie.getLogger() << "My statistics" << endl;
//wait for rtc sync? break;
rtcDeepSleepTime = deepSleepTime.get(); case HomieEventType::MQTT_READY:
Serial << "MQTT ready " << rtcDeepSleepTime << " ms ds" << endl; //wait for rtc sync?
for(int i=0; i < MAX_PLANTS; i++) { rtcDeepSleepTime = deepSleepTime.get();
mPlants[i].postMQTTconnection(); Serial << "MQTT ready " << rtcDeepSleepTime << " ms ds" << endl;
} for (int i = 0; i < MAX_PLANTS; i++)
{
mPlants[i].postMQTTconnection();
}
mode2MQTT(); mode2MQTT();
break; break;
case HomieEventType::READY_TO_SLEEP: case HomieEventType::READY_TO_SLEEP:
Homie.getLogger() << "rtsleep" << endl; Homie.getLogger() << "rtsleep" << endl;
esp_deep_sleep_start(); esp_deep_sleep_start();
break; break;
case HomieEventType::OTA_STARTED: case HomieEventType::OTA_STARTED:
digitalWrite(OUTPUT_SENSOR, HIGH); digitalWrite(OUTPUT_SENSOR, HIGH);
digitalWrite(OUTPUT_PUMP, LOW); digitalWrite(OUTPUT_PUMP, LOW);
gpio_hold_dis(GPIO_NUM_13); //pump pwr gpio_hold_dis(GPIO_NUM_13); //pump pwr
gpio_deep_sleep_hold_dis(); gpio_deep_sleep_hold_dis();
for (int i=0; i < MAX_PLANTS; i++) { for (int i = 0; i < MAX_PLANTS; i++)
mPlants[i].deactivatePump(); {
} mPlants[i].deactivatePump();
mode3Active=true; }
break; mode3Active = true;
case HomieEventType::OTA_SUCCESSFUL: break;
digitalWrite(OUTPUT_SENSOR, LOW); case HomieEventType::OTA_SUCCESSFUL:
digitalWrite(OUTPUT_PUMP, LOW); digitalWrite(OUTPUT_SENSOR, LOW);
ESP.restart(); digitalWrite(OUTPUT_PUMP, LOW);
break; ESP.restart();
default: break;
break; default:
break;
} }
} }
int determineNextPump(){ int determineNextPump()
{
float solarValue = getSolarVoltage(); float solarValue = getSolarVoltage();
bool isLowLight =(solarValue > SOLAR_CHARGE_MIN_VOLTAGE || solarValue < SOLAR_CHARGE_MAX_VOLTAGE); bool isLowLight = (solarValue > SOLAR_CHARGE_MIN_VOLTAGE || solarValue < SOLAR_CHARGE_MAX_VOLTAGE);
//FIXME instead of for, use sorted by last activation index to ensure equal runtime? //FIXME instead of for, use sorted by last activation index to ensure equal runtime?
for(int i=0; i < MAX_PLANTS; i++) { for (int i = 0; i < MAX_PLANTS; i++)
{
long lastActivation = getLastActivationForPump(i); long lastActivation = getLastActivationForPump(i);
long sinceLastActivation = getCurrentTime()-lastActivation; long sinceLastActivation = getCurrentTime() - lastActivation;
//this pump is in cooldown skip it and disable low power mode trigger for it //this pump is in cooldown skip it and disable low power mode trigger for it
if(mPlants[i].isInCooldown(sinceLastActivation) ){ if (mPlants[i].isInCooldown(sinceLastActivation))
{
Serial.printf("%d Skipping due to cooldown\r\n", i); Serial.printf("%d Skipping due to cooldown\r\n", i);
setMoistureTrigger(i, DEACTIVATED_PLANT); setMoistureTrigger(i, DEACTIVATED_PLANT);
continue; continue;
} }
//skip as it is not low light //skip as it is not low light
if(!isLowLight && mPlants[i].isAllowedOnlyAtLowLight()){ if (!isLowLight && mPlants[i].isAllowedOnlyAtLowLight())
{
Serial.println("Skipping due to light"); Serial.println("Skipping due to light");
continue; continue;
} }
if(mPlants->isPumpRequired()){ if (mPlants->isPumpRequired())
{
Serial.printf("%d Requested pumping\r\n", i); Serial.printf("%d Requested pumping\r\n", i);
return i; return i;
} }
@ -443,23 +506,29 @@ int determineNextPump(){
* @return true when the command was parsed and executed succuessfully * @return true when the command was parsed and executed succuessfully
* @return false on errors when parsing the request * @return false on errors when parsing the request
*/ */
bool aliveHandler(const HomieRange& range, const String& value) { bool aliveHandler(const HomieRange &range, const String &value)
if (range.isRange) return false; // only one controller is present {
Serial << value << endl; if (range.isRange)
if (value.equals("ON") || value.equals("On") || value.equals("1")) { return false; // only one controller is present
mode3Active=true; Serial << value << endl;
} else { if (value.equals("ON") || value.equals("On") || value.equals("1"))
mode3Active=false; {
mode3Active = true;
}
else
{
mode3Active = false;
} }
return true; return true;
} }
void homieLoop(){ void homieLoop()
{
} }
void systemInit(){ void systemInit()
{
WiFi.mode(WIFI_STA); WiFi.mode(WIFI_STA);
Homie_setFirmware("PlantControl", FIRMWARE_VERSION); Homie_setFirmware("PlantControl", FIRMWARE_VERSION);
@ -471,53 +540,55 @@ void systemInit(){
deepSleepNightTime.setDefaultValue(30); deepSleepNightTime.setDefaultValue(30);
wateringDeepSleep.setDefaultValue(5); wateringDeepSleep.setDefaultValue(5);
/* waterLevelMax 1000 */ /* 100cm in mm */ /* waterLevelMax 1000 */ /* 100cm in mm */
waterLevelMin.setDefaultValue(50); /* 5cm in mm */ waterLevelMin.setDefaultValue(50); /* 5cm in mm */
waterLevelWarn.setDefaultValue(500); /* 50cm in mm */ waterLevelWarn.setDefaultValue(500); /* 50cm in mm */
waterLevelVol.setDefaultValue(5000); /* 5l in ml */ waterLevelVol.setDefaultValue(5000); /* 5l in ml */
Homie.setLoopFunction(homieLoop); Homie.setLoopFunction(homieLoop);
Homie.onEvent(onHomieEvent); Homie.onEvent(onHomieEvent);
Homie.setup(); Homie.setup();
mConfigured = Homie.isConfigured(); mConfigured = Homie.isConfigured();
if (mConfigured) { if (mConfigured)
for(int i=0; i < MAX_PLANTS; i++) { {
for (int i = 0; i < MAX_PLANTS; i++)
{
mPlants[i].advertise(); mPlants[i].advertise();
} }
sensorTemp.advertise("control") sensorTemp.advertise("control")
.setName("Temperature") .setName("Temperature")
.setDatatype("number") .setDatatype("number")
.setUnit("°C"); .setUnit("°C");
sensorTemp.advertise("temp") sensorTemp.advertise("temp")
.setName("Temperature") .setName("Temperature")
.setDatatype("number") .setDatatype("number")
.setUnit("°C"); .setUnit("°C");
sensorLipo.advertise("percent") sensorLipo.advertise("percent")
.setName("Percent") .setName("Percent")
.setDatatype("number") .setDatatype("number")
.setUnit("%"); .setUnit("%");
sensorLipo.advertise("volt") sensorLipo.advertise("volt")
.setName("Volt") .setName("Volt")
.setDatatype("number") .setDatatype("number")
.setUnit("V"); .setUnit("V");
sensorSolar.advertise("percent") sensorSolar.advertise("percent")
.setName("Percent") .setName("Percent")
.setDatatype("number") .setDatatype("number")
.setUnit("%"); .setUnit("%");
sensorSolar.advertise("volt") sensorSolar.advertise("volt")
.setName("Volt") .setName("Volt")
.setDatatype("number") .setDatatype("number")
.setUnit("V"); .setUnit("V");
sensorWater.advertise("remaining").setDatatype("number").setUnit("%"); sensorWater.advertise("remaining").setDatatype("number").setUnit("%");
} }
stayAlive.advertise("alive").setName("Alive").setDatatype("number").settable(aliveHandler); stayAlive.advertise("alive").setName("Alive").setDatatype("number").settable(aliveHandler);
} }
bool mode1()
bool mode1(){ {
Serial.println("m1"); Serial.println("m1");
Serial << getCurrentTime() << " curtime" << endl; Serial << getCurrentTime() << " curtime" << endl;
@ -534,62 +605,72 @@ bool mode1(){
(rtcMoistureTrigger3 == 0) || (rtcMoistureTrigger3 == 0) ||
(rtcMoistureTrigger4 == 0) || (rtcMoistureTrigger4 == 0) ||
(rtcMoistureTrigger5 == 0) || (rtcMoistureTrigger5 == 0) ||
(rtcMoistureTrigger6 == 0) (rtcMoistureTrigger6 == 0))
)
{ {
Serial.println("RTCm2"); Serial.println("RTCm2");
return true; return true;
} }
if ((rtcMoistureTrigger0 != DEACTIVATED_PLANT) && (mPlants[0].getSensorValue() < rtcMoistureTrigger0) ) { if ((rtcMoistureTrigger0 != DEACTIVATED_PLANT) && (mPlants[0].getSensorValue() < rtcMoistureTrigger0))
{
Serial.println("mt0"); Serial.println("mt0");
return true; return true;
} }
if ((rtcMoistureTrigger1 != DEACTIVATED_PLANT) && (mPlants[1].getSensorValue() < rtcMoistureTrigger1) ) { if ((rtcMoistureTrigger1 != DEACTIVATED_PLANT) && (mPlants[1].getSensorValue() < rtcMoistureTrigger1))
{
Serial.println("mt1"); Serial.println("mt1");
return true; return true;
} }
if ((rtcMoistureTrigger2 != DEACTIVATED_PLANT) && (mPlants[2].getSensorValue() < rtcMoistureTrigger2) ) { if ((rtcMoistureTrigger2 != DEACTIVATED_PLANT) && (mPlants[2].getSensorValue() < rtcMoistureTrigger2))
{
Serial.println("mt2"); Serial.println("mt2");
return true; return true;
} }
if ((rtcMoistureTrigger3 != DEACTIVATED_PLANT) && (mPlants[3].getSensorValue() < rtcMoistureTrigger3) ) { if ((rtcMoistureTrigger3 != DEACTIVATED_PLANT) && (mPlants[3].getSensorValue() < rtcMoistureTrigger3))
{
Serial.println("mt3"); Serial.println("mt3");
return true; return true;
} }
if ((rtcMoistureTrigger4 != DEACTIVATED_PLANT) && (mPlants[4].getSensorValue() < rtcMoistureTrigger4) ) { if ((rtcMoistureTrigger4 != DEACTIVATED_PLANT) && (mPlants[4].getSensorValue() < rtcMoistureTrigger4))
{
Serial.println("mt4"); Serial.println("mt4");
return true; return true;
} }
if ((rtcMoistureTrigger5 != DEACTIVATED_PLANT) && (mPlants[5].getSensorValue() < rtcMoistureTrigger5) ) { if ((rtcMoistureTrigger5 != DEACTIVATED_PLANT) && (mPlants[5].getSensorValue() < rtcMoistureTrigger5))
{
Serial.println("mt5"); Serial.println("mt5");
return true; return true;
} }
if ((rtcMoistureTrigger6 != DEACTIVATED_PLANT) && (mPlants[6].getSensorValue() < rtcMoistureTrigger6) ) { if ((rtcMoistureTrigger6 != DEACTIVATED_PLANT) && (mPlants[6].getSensorValue() < rtcMoistureTrigger6))
{
Serial.println("mt6"); Serial.println("mt6");
return true; return true;
} }
//check how long it was already in mode1 if to long goto mode2 //check how long it was already in mode1 if to long goto mode2
long cTime = getCurrentTime(); long cTime = getCurrentTime();
if(cTime < 100000){ if (cTime < 100000)
{
Serial.println("Starting mode 2 due to missing ntp"); Serial.println("Starting mode 2 due to missing ntp");
//missing ntp time boot to mode3 //missing ntp time boot to mode3
return true; return true;
} }
if(gotoMode2AfterThisTimestamp < cTime){ if (gotoMode2AfterThisTimestamp < cTime)
{
Serial.println("Starting mode 2 after specified mode1 time"); Serial.println("Starting mode 2 after specified mode1 time");
return true; return true;
} }
return false; return false;
} }
void mode2(){ void mode2()
{
Serial.println("m2"); Serial.println("m2");
systemInit(); systemInit();
/* Jump into Mode 3, if not configured */ /* Jump into Mode 3, if not configured */
if (!mConfigured) { if (!mConfigured)
{
Serial.println("m3"); Serial.println("m3");
mode3Active = true; mode3Active = true;
} }
@ -599,12 +680,15 @@ void mode2(){
* @brief Startup function * @brief Startup function
* Is called once, the controller is started * Is called once, the controller is started
*/ */
void setup() { void setup()
{
Serial.begin(115200); Serial.begin(115200);
Serial.setTimeout(1000); // Set timeout of 1 second Serial.setTimeout(1000); // Set timeout of 1 second
Serial << endl << endl; Serial << endl
<< endl;
/* Intialize Plant */ /* Intialize Plant */
for(int i=0; i < MAX_PLANTS; i++) { for (int i = 0; i < MAX_PLANTS; i++)
{
mPlants[i].init(); mPlants[i].init();
} }
@ -620,7 +704,8 @@ void setup() {
/* Disable Wifi and bluetooth */ /* Disable Wifi and bluetooth */
WiFi.mode(WIFI_OFF); WiFi.mode(WIFI_OFF);
if (HomieInternals::MAX_CONFIG_SETTING_SIZE < MAX_CONFIG_SETTING_ITEMS) { if (HomieInternals::MAX_CONFIG_SETTING_SIZE < MAX_CONFIG_SETTING_ITEMS)
{
//increase the config settings to 50 and the json to 3000 //increase the config settings to 50 and the json to 3000
Serial << "Limits.hpp" << endl; Serial << "Limits.hpp" << endl;
} }
@ -629,19 +714,23 @@ void setup() {
//Panik mode, the Lipo is empty, sleep a long long time: //Panik mode, the Lipo is empty, sleep a long long time:
if ((getBatteryVoltage() < MINIMUM_LIPO_VOLT) && if ((getBatteryVoltage() < MINIMUM_LIPO_VOLT) &&
(getBatteryVoltage() > NO_LIPO_VOLT)) { (getBatteryVoltage() > NO_LIPO_VOLT))
{
Serial << PANIK_MODE_DEEPSLEEP << " s lipo " << getBatteryVoltage() << "V" << endl; Serial << PANIK_MODE_DEEPSLEEP << " s lipo " << getBatteryVoltage() << "V" << endl;
esp_sleep_enable_timer_wakeup(PANIK_MODE_DEEPSLEEP_US); esp_sleep_enable_timer_wakeup(PANIK_MODE_DEEPSLEEP_US);
esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_PERIPH, ESP_PD_OPTION_OFF); esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_PERIPH, ESP_PD_OPTION_OFF);
esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_FAST_MEM, ESP_PD_OPTION_OFF); esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_FAST_MEM, ESP_PD_OPTION_OFF);
esp_sleep_pd_config(ESP_PD_DOMAIN_XTAL,ESP_PD_OPTION_ON); esp_sleep_pd_config(ESP_PD_DOMAIN_XTAL, ESP_PD_OPTION_ON);
esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_SLOW_MEM, ESP_PD_OPTION_OFF); esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_SLOW_MEM, ESP_PD_OPTION_OFF);
esp_deep_sleep_start(); esp_deep_sleep_start();
} }
if(mode1()){ if (mode1())
{
mode2(); mode2();
} else { }
else
{
Serial.println("nop"); Serial.println("nop");
Serial.flush(); Serial.flush();
esp_deep_sleep_start(); esp_deep_sleep_start();
@ -653,15 +742,20 @@ void setup() {
* Executs the Homie base functionallity or triggers sleeping, if requested. * Executs the Homie base functionallity or triggers sleeping, if requested.
*/ */
void loop() { void loop()
if (!mDeepsleep) { {
if (!mDeepsleep)
{
Homie.loop(); Homie.loop();
} else { }
else
{
esp_deep_sleep_start(); esp_deep_sleep_start();
} }
if(millis() > 30000 && !mode3Active){ if (millis() > 30000 && !mode3Active)
Serial << (millis()/ 1000) << "s alive" << endl; {
Serial << (millis() / 1000) << "s alive" << endl;
Serial.flush(); Serial.flush();
esp_deep_sleep_start(); esp_deep_sleep_start();
} }