made most battery code ready to work

This commit is contained in:
Empire 2024-01-22 23:13:52 +01:00
parent b933516062
commit 7ea1486e2c
2 changed files with 174 additions and 134 deletions

View File

@ -1,3 +1,5 @@
use anyhow::bail;
use bit_field::BitField;
use embedded_hal::blocking::{i2c::{WriteRead, Write, Read}, delay::DelayMs}; use embedded_hal::blocking::{i2c::{WriteRead, Write, Read}, delay::DelayMs};
use esp_idf_sys::vTaskDelay; use esp_idf_sys::vTaskDelay;
@ -26,7 +28,8 @@ fn xemics_to_double(x:u32) -> f32 {
} }
// Get the exponent, it's 2^(MSbyte - 0x80) // Get the exponent, it's 2^(MSbyte - 0x80)
f_exponent = 2.0_f32.powf(v_msbyte.wrapping_sub(128) as f32); f_exponent = 2.0_f32.powf(((v_msbyte as i16) - 128) as f32);
println!("f_exponent {}", f_exponent);
// Or in 0x80 to the MidHiByte // Or in 0x80 to the MidHiByte
v_mid_hi_byte = (v_mid_hi_byte | 128) as u8; v_mid_hi_byte = (v_mid_hi_byte | 128) as u8;
// get value out of midhi byte // get value out of midhi byte
@ -79,48 +82,44 @@ fn xemics_to_double(x:u32) -> f32 {
// return -fResult; // return -fResult;
} }
fn double_to_xemics(mut x:f32) -> u32 {
let i_byte1:i16; fn float_to_xemics(mut x: f32) -> u32 {
let mut i_byte2:i16;
let i_byte3: i16;
let i_byte4: i16;
let i_exp: i16;
let mut b_negative = false; let mut b_negative = false;
let mut f_mantissa: f32;
// Don't blow up with logs of zero // Vermeidung von Logarithmus von Null
if x == 0.0 { if x == 0.0 {
x = 0.00001; x = 0.00001;
} }
if x < 0.0
{ // Überprüfung auf negative Zahl
if x < 0.0 {
b_negative = true; b_negative = true;
x = -x; x = -x;
} }
// find the correct exponent
i_exp = (x.log2() + 1.0) as i16;// remember - log of any base is ln(x)/ln(base)
// MS byte is the exponent + 0x80 // Korrekten Exponenten finden
i_byte1 = i_exp + 128; let i_exp = (x.log2().floor() + 1.0) as i32;
// Divide input by this exponent to get mantissa // MS-Byte ist der Exponent + 0x80
f_mantissa = x / (2.0_f32.powf(i_exp as f32)); let i_byte1 = (i_exp + 128) as u32;
// Scale it up // Eingabe durch diesen Exponenten teilen, um Mantisse zu erhalten
f_mantissa = f_mantissa / (2.0_f32.powf(-24.0)); let f_mantissa = x / 2f32.powi(i_exp);
// Split the mantissa into 3 bytes // Skalierung
i_byte2 = (f_mantissa / (2.0_f32.powf(16.0))) as i16; let scaled_mantissa = f_mantissa * 2f32.powi(24);
i_byte3 = ((f_mantissa - (i_byte2 as f32 * (2.0_f32.powf(16.0)))) / (2.0_f32.powf(8.0))) as i16; // Aufteilung der Mantisse in 3 Bytes
let i_byte2 = ((scaled_mantissa / 65536.0) as u32) & 0xFF;
let i_byte3 = ((scaled_mantissa / 256.0) as u32) & 0xFF;
let i_byte4 = (scaled_mantissa as u32) & 0xFF;
i_byte4 = (f_mantissa - (i_byte2 as f32 * (2.0_f32.powf(16.0))) - (i_byte3 as f32 * (2.0_f32.powf(8.0)))) as i16; // Subtraktion des Vorzeichenbits, falls die Zahl positiv ist
let i_byte2 = if !b_negative { i_byte2 & 0x7F } else { i_byte2 };
// Zusammenbau des Ergebnisses
return (i_byte1 << 24) | (i_byte2 << 16) | (i_byte3 << 8) | i_byte4
// subtract the sign bit if number is positive
if b_negative == false
{
i_byte2 = i_byte2 & 0x7F;
}
return (i_byte1 as u8 as u32) << 24 | (i_byte2 as u8 as u32) << 16 | (i_byte3 as u8 as u32) << 8 | i_byte4 as u8 as u32;
// int iByte1, iByte2, iByte3, iByte4, iExp; // int iByte1, iByte2, iByte3, iByte4, iExp;
// bool bNegative = false; // bool bNegative = false;
@ -160,40 +159,30 @@ fn double_to_xemics(mut x:f32) -> u32 {
} }
impl <I2C,DELAY, E: std::fmt::Debug> Bq34z100g1 for Bq34z100g1Driver<I2C,DELAY> where I2C: WriteRead<Error = E> + Write<Error = E> + Read<Error = E>, DELAY: DelayMs<u32> { impl <I2C,DELAY, E: std::fmt::Debug> Bq34z100g1 for Bq34z100g1Driver<I2C,DELAY> where I2C: WriteRead<Error = E> + Write<Error = E> + Read<Error = E>, DELAY: DelayMs<u32> {
fn read_register(&mut self, address:u8 , length:u8) -> u16 { fn read_2_register_as_u16(&mut self, address:u8) -> u16 {
println!("Reading register block {:#04x} with length {}", address, length); // println!("Reading register block {:#04x} with length {}", address, 2);
let data: [u8;1] = [address]; let data: [u8; 1] = [address];
if length != 1 && length != 2{ let mut buffer: [u8; 2] = [0; 2];
todo!(); self.i2c.write_read(BQ34Z100_G1_ADDRESS, &data, &mut buffer).unwrap();
} u16::from_le_bytes([buffer[0], buffer[1]])
if length == 2 { }
let mut buffer : [u8;2] = [0_u8,0_u8];
self.i2c.write_read(BQ34Z100_G1_ADDRESS, &data, &mut buffer).unwrap();
return ((buffer[1] as u16) << 8) | buffer[0] as u16;
} else {
let mut buffer : [u8;1] = [0_u8];
self.i2c.write_read(BQ34Z100_G1_ADDRESS, &data, &mut buffer).unwrap();
return buffer[0] as u16;
}
// Wire.beginTransmission(BQ34Z100_G1_ADDRESS); fn read_1_register_as_u8(&mut self, address:u8) -> u8 {
// Wire.write(address); // println!("Reading register block {:#04x} with length {}", address, 1);
// Wire.endTransmission(false); let data: [u8; 1] = [address];
// Wire.requestFrom(BQ34Z100_G1_ADDRESS, length, true); let mut buffer: [u8; 1] = [0; 1];
self.i2c.write_read(BQ34Z100_G1_ADDRESS, &data, &mut buffer).unwrap();
// uint16_t temp = 0; buffer[0]
// for (uint8_t i = 0; i < length; i++) {
// temp |= Wire.read() << (8 * i);
// }
// return temp;
} }
fn read_control(&mut self,address_lsb:u8, address_msb: u8) -> u16 { fn read_control(&mut self,address_lsb:u8, address_msb: u8) -> u16 {
println!("Reading controll {} {}", address_lsb, address_msb); // println!("Reading controll {} {}", address_lsb, address_msb);
let data: [u8;3] = [0x00_u8, address_lsb, address_msb]; let data: [u8;3] = [0x00_u8, address_lsb, address_msb];
self.i2c.write(BQ34Z100_G1_ADDRESS, &data).unwrap(); self.i2c.write(BQ34Z100_G1_ADDRESS, &data).unwrap();
return self.read_register(0x00, 2); return self.read_2_register_as_u16(0x00);
// Wire.beginTransmission(BQ34Z100_G1_ADDRESS); // Wire.beginTransmission(BQ34Z100_G1_ADDRESS);
// Wire.write(0x00); // Wire.write(0x00);
// Wire.write(address_lsb); // Wire.write(address_lsb);
@ -203,7 +192,7 @@ impl <I2C,DELAY, E: std::fmt::Debug> Bq34z100g1 for Bq34z100g1Driver<I2C,DELAY>
} }
fn internal_temperature(&mut self) -> u16 { fn internal_temperature(&mut self) -> u16 {
return self.read_register(0x2a, 2); return self.read_2_register_as_u16(0x2a);
} }
fn read_flash_block(&mut self, sub_class:u8, offset:u8) { fn read_flash_block(&mut self, sub_class:u8, offset:u8) {
@ -633,6 +622,28 @@ impl <I2C,DELAY, E: std::fmt::Debug> Bq34z100g1 for Bq34z100g1Driver<I2C,DELAY>
// return true; // return true;
} }
fn set_led_mode(&mut self, led_config:u8) {
self.unsealed();
self.read_flash_block(64, 0);
self.flash_block_data[4] = led_config;
self.write_reg(0x40 + 4, self.flash_block_data[4]);
let checksum = self.flash_block_checksum();
self.write_reg(0x60, checksum);
self.delay.delay_ms(150);
self.reset();
self.delay.delay_ms(150);
self.unsealed();
self.read_flash_block(64, 0);
if (self.flash_block_data[4] != led_config){
println!("Failed to set led config!");
}
}
fn update_number_of_series_cells(&mut self, cells:u8)-> bool { fn update_number_of_series_cells(&mut self, cells:u8)-> bool {
self.unsealed(); self.unsealed();
self.read_flash_block(64, 0); self.read_flash_block(64, 0);
@ -1108,28 +1119,6 @@ impl <I2C,DELAY, E: std::fmt::Debug> Bq34z100g1 for Bq34z100g1Driver<I2C,DELAY>
} }
fn calibrate_sense_resistor(&mut self, applied_current:i16) { fn calibrate_sense_resistor(&mut self, applied_current:i16) {
// // test data from https://e2e.ti.com/support/power-management/f/196/p/551252/2020286?tisearch=e2e-quicksearch&keymatch=xemics#2020286
// let value_float: f32 = 0.8335;
// let value_xemics: u32 = 0x80555E9E;
// // try converting float to xemics
// let converted_value: u32 = double_to_xemics(value_float);
// println!("Converted value: {}", converted_value);
// // try converting xemics to float
// let converted_float :f32 = xemics_to_double(value_xemics);
// println!("Converted float: {}", converted_float);
// println!("Expected default CC Gain: {}", double_to_xemics(0.4768));
// println!("Expected default CC Delta: {}", double_to_xemics(567744.56));
for i in 1 .. 500000 {
let xemics = double_to_xemics(i as f32);
let restored = xemics_to_double(xemics);
if((i as f32 - restored).abs() > 0.1){
println!("Large diff for {}, restored as {}", i , restored);
}
}
unsafe { vTaskDelay(1001) };
let mut current_array: [f32;50] = [0.0;50]; let mut current_array: [f32;50] = [0.0;50];
for i in 0 .. 50 { for i in 0 .. 50 {
current_array[i] = self.current() as f32; current_array[i] = self.current() as f32;
@ -1162,7 +1151,7 @@ impl <I2C,DELAY, E: std::fmt::Debug> Bq34z100g1 for Bq34z100g1Driver<I2C,DELAY>
cc_gain |= self.flash_block_data[3] as u32; cc_gain |= self.flash_block_data[3] as u32;
let float_cc_gain = xemics_to_double(cc_gain); let float_cc_gain = xemics_to_double(cc_gain);
let xemics_cc_gain = double_to_xemics(float_cc_gain); let xemics_cc_gain = float_to_xemics(float_cc_gain);
let float_cc_gain2 = xemics_to_double(xemics_cc_gain); let float_cc_gain2 = xemics_to_double(xemics_cc_gain);
if (float_cc_gain-float_cc_gain2).abs() > 0.01 { if (float_cc_gain-float_cc_gain2).abs() > 0.01 {
println!("Error converting old gain!!"); println!("Error converting old gain!!");
@ -1170,24 +1159,17 @@ impl <I2C,DELAY, E: std::fmt::Debug> Bq34z100g1 for Bq34z100g1Driver<I2C,DELAY>
let mut gain_resistence: f32 = 4.768 / float_cc_gain; let mut gain_resistence: f32 = 4.768 / float_cc_gain;
println!("Current gain R is {} xemics is {}", gain_resistence, cc_gain); println!("Current gain R is {} xemics is {}", gain_resistence, cc_gain);
if(gain_resistence == 0.0){
gain_resistence = 10.0;
}
let mut temp: f32 = (current_mean * gain_resistence) / applied_current as f32; let mut temp: f32 = (current_mean * gain_resistence) / applied_current as f32;
println!("Current is {} , applied current ist {}, new gain is {}", current_mean, applied_current, temp); println!("Current is {} , applied current ist {}, new gain is {}", current_mean, applied_current, temp);
if(temp == 0.0){
println!("Failure calculating new gain, fallback gain used");
temp = 10.0;
}
let mut new_cc_gain : u32 = double_to_xemics(4.768 / temp); let mut new_cc_gain : u32 = float_to_xemics(4.768 / temp);
self.flash_block_data[0] = (new_cc_gain >> 24) as u8; self.flash_block_data[0] = (new_cc_gain >> 24) as u8;
self.flash_block_data[1] = (new_cc_gain >> 16) as u8; self.flash_block_data[1] = (new_cc_gain >> 16) as u8;
self.flash_block_data[2] = (new_cc_gain >> 8) as u8; self.flash_block_data[2] = (new_cc_gain >> 8) as u8;
self.flash_block_data[3] = (new_cc_gain & 0xff) as u8; self.flash_block_data[3] = (new_cc_gain & 0xff) as u8;
new_cc_gain = double_to_xemics(5677445.6 / temp); new_cc_gain = float_to_xemics(5677445.6 / temp);
self.flash_block_data[4] = (new_cc_gain >> 24) as u8; self.flash_block_data[4] = (new_cc_gain >> 24) as u8;
self.flash_block_data[5] = (new_cc_gain >> 16) as u8; self.flash_block_data[5] = (new_cc_gain >> 16) as u8;
self.flash_block_data[6] = (new_cc_gain >> 8) as u8; self.flash_block_data[6] = (new_cc_gain >> 8) as u8;
@ -1359,137 +1341,160 @@ impl <I2C,DELAY, E: std::fmt::Debug> Bq34z100g1 for Bq34z100g1Driver<I2C,DELAY>
} }
fn state_of_charge(&mut self) -> u8 { fn state_of_charge(&mut self) -> u8 {
return self.read_register(0x02, 1) as u8; return self.read_1_register_as_u8(0x02);
} }
fn state_of_charge_max_error(&mut self) -> u8 { fn state_of_charge_max_error(&mut self) -> u8 {
return self.read_register(0x03, 1) as u8; return self.read_1_register_as_u8(0x03);
} }
fn remaining_capacity(&mut self) -> u16 { fn remaining_capacity(&mut self) -> u16 {
return self.read_register(0x04, 2); return self.read_2_register_as_u16(0x04);
} }
fn full_charge_capacity(&mut self) -> u16 { fn full_charge_capacity(&mut self) -> u16 {
return self.read_register(0x06, 2); return self.read_2_register_as_u16(0x06);
} }
fn voltage(&mut self) -> u16 { fn voltage(&mut self) -> u16 {
return self.read_register(0x08, 2); return self.read_2_register_as_u16(0x08);
} }
fn average_current(&mut self) -> i16 { fn average_current(&mut self) -> i16 {
return self.read_register(0x0a, 2) as i16; return self.read_2_register_as_u16(0x0a) as i16;
} }
fn temperature(&mut self) -> u16 { fn temperature(&mut self) -> u16 {
return self.read_register(0x0c, 2); return self.read_2_register_as_u16(0x0c);
} }
fn flags(&mut self) -> u16 { fn flags(&mut self) -> u16 {
return self.read_register(0x0e, 2); return self.read_2_register_as_u16(0x0e);
} }
fn flags_b(&mut self) -> u16 { fn flags_b(&mut self) -> u16 {
return self.read_register(0x12, 2); return self.read_2_register_as_u16(0x12);
} }
fn current(&mut self) -> i16 { fn current(&mut self) -> i16 {
return self.read_register(0x10, 2) as i16; return self.read_2_register_as_u16(0x10) as i16;
} }
fn average_time_to_empty(&mut self) -> u16 { fn average_time_to_empty(&mut self) -> u16 {
return self.read_register(0x18, 2); return self.read_2_register_as_u16(0x18);
} }
fn average_time_to_full(&mut self) -> u16 { fn average_time_to_full(&mut self) -> u16 {
return self.read_register(0x1a, 2); return self.read_2_register_as_u16(0x1a);
} }
fn passed_charge(&mut self) -> u16 { fn passed_charge(&mut self) -> u16 {
return self.read_register(0x1c, 2); return self.read_2_register_as_u16(0x1c);
} }
fn do_d0_time(&mut self) -> u16 { fn do_d0_time(&mut self) -> u16 {
return self.read_register(0x1e, 2); return self.read_2_register_as_u16(0x1e);
} }
fn available_energy(&mut self) -> u16 { fn available_energy(&mut self) -> u16 {
return self.read_register(0x24, 2); return self.read_2_register_as_u16(0x24);
} }
fn average_power(&mut self) -> u16 { fn average_power(&mut self) -> u16 {
return self.read_register(0x26, 2); return self.read_2_register_as_u16(0x26);
} }
fn serial_number(&mut self) -> u16 { fn serial_number(&mut self) -> u16 {
return self.read_register(0x28, 2); return self.read_2_register_as_u16(0x28);
} }
fn cycle_count(&mut self) -> u16 { fn cycle_count(&mut self) -> u16 {
return self.read_register(0x2c, 2); return self.read_2_register_as_u16(0x2c);
} }
fn state_of_health(&mut self) -> u16 { fn state_of_health(&mut self) -> u16 {
return self.read_register(0x2e, 2); return self.read_2_register_as_u16(0x2e);
} }
fn charge_voltage(&mut self) -> u16 { fn charge_voltage(&mut self) -> u16 {
return self.read_register(0x30, 2); return self.read_2_register_as_u16(0x30);
} }
fn charge_current(&mut self) -> u16 { fn charge_current(&mut self) -> u16 {
return self.read_register(0x32, 2); return self.read_2_register_as_u16(0x32);
} }
fn pack_configuration(&mut self) -> u16 { fn pack_configuration(&mut self) -> u16 {
return self.read_register(0x3a, 2); return self.read_2_register_as_u16(0x3a);
} }
fn design_capacity(&mut self) -> u16 { fn design_capacity(&mut self) -> u16 {
return self.read_register(0x3c, 2); return self.read_2_register_as_u16(0x3c);
} }
fn grid_number(&mut self) -> u8 { fn grid_number(&mut self) -> u8 {
return self.read_register(0x62, 1) as u8; return self.read_1_register_as_u8(0x62);
} }
fn learned_status(&mut self) -> u8 { fn learned_status(&mut self) -> u8 {
return self.read_register(0x63, 1) as u8; return self.read_1_register_as_u8(0x63);
} }
fn dod_at_eoc(&mut self) -> u16 { fn dod_at_eoc(&mut self) -> u16 {
return self.read_register(0x64, 2); return self.read_2_register_as_u16(0x64);
} }
fn q_start(&mut self) -> u16 { fn q_start(&mut self) -> u16 {
return self.read_register(0x66, 2); return self.read_2_register_as_u16(0x66);
} }
fn true_fcc(&mut self) -> u16 { fn true_fcc(&mut self) -> u16 {
return self.read_register(0x6a, 2); return self.read_2_register_as_u16(0x6a);
} }
fn state_time(&mut self) -> u16 { fn state_time(&mut self) -> u16 {
return self.read_register(0x6c, 2); return self.read_2_register_as_u16(0x6c);
} }
fn q_max_passed_q(&mut self) -> u16 { fn q_max_passed_q(&mut self) -> u16 {
return self.read_register(0x6e, 2); return self.read_2_register_as_u16(0x6e);
} }
fn dod_0(&mut self) -> u16 { fn dod_0(&mut self) -> u16 {
return self.read_register(0x70, 2); return self.read_2_register_as_u16(0x70);
} }
fn q_max_dod_0(&mut self) -> u16 { fn q_max_dod_0(&mut self) -> u16 {
return self.read_register(0x72, 2); return self.read_2_register_as_u16(0x72);
} }
fn q_max_time(&mut self) -> u16 { fn q_max_time(&mut self) -> u16 {
return self.read_register(0x74, 2); return self.read_2_register_as_u16(0x74);
} }
fn get_flags_decoded(&mut self) -> Flags {
let flags = self.flags().to_le_bytes();
return Flags {
fast_charge_allowed: flags[0].get_bit(0),
full_chage: flags[0].get_bit(1),
charging_not_allowed: flags[0].get_bit(2),
charge_inhibit: flags[0].get_bit(3),
bat_low: flags[0].get_bit(4),
bat_high: flags[0].get_bit(5),
over_temp_discharge: flags[0].get_bit(6),
over_temp_charge: flags[0].get_bit(7),
discharge: flags[1].get_bit(0),
state_of_charge_f: flags[1].get_bit(1),
state_of_charge_1: flags[1].get_bit(2),
cf: flags[1].get_bit(4),
ocv_taken: flags[1].get_bit(7)
}
}
} }
pub struct Bq34z100g1Driver<I2C, Delay>{ pub struct Bq34z100g1Driver<I2C, Delay>{
@ -1498,7 +1503,8 @@ pub struct Bq34z100g1Driver<I2C, Delay>{
pub flash_block_data: [u8;32], pub flash_block_data: [u8;32],
} }
pub trait Bq34z100g1 { pub trait Bq34z100g1 {
fn read_register(&mut self, address:u8 , length:u8) -> u16; fn read_2_register_as_u16(&mut self, address:u8) -> u16;
fn read_1_register_as_u8(&mut self, address:u8) -> u8;
fn read_control(&mut self, address_lsb:u8, address_msb: u8) -> u16; fn read_control(&mut self, address_lsb:u8, address_msb: u8) -> u16;
fn read_flash_block(&mut self, sub_class:u8, offset:u8); fn read_flash_block(&mut self, sub_class:u8, offset:u8);
fn write_reg(&mut self, address:u8, value:u8 ); fn write_reg(&mut self, address:u8, value:u8 );
@ -1581,4 +1587,23 @@ pub trait Bq34z100g1 {
fn dod_0(&mut self) -> u16; fn dod_0(&mut self) -> u16;
fn q_max_dod_0(&mut self) -> u16; fn q_max_dod_0(&mut self) -> u16;
fn q_max_time(&mut self) -> u16; fn q_max_time(&mut self) -> u16;
fn set_led_mode(&mut self, led_config:u8);
fn get_flags_decoded(&mut self) -> Flags;
}
#[derive(Debug)]
pub struct Flags{
fast_charge_allowed:bool,
full_chage:bool,
charging_not_allowed:bool,
charge_inhibit:bool,
bat_low: bool,
bat_high: bool,
over_temp_discharge: bool,
over_temp_charge: bool,
discharge:bool,
state_of_charge_f: bool,
state_of_charge_1: bool,
cf: bool,
ocv_taken: bool
} }

View File

@ -896,11 +896,26 @@ impl CreatePlantHal<'_> for PlantHal {
//println!("voltage divider"); //println!("voltage divider");
//battery_driver.calibrate_voltage_divider(15000.0, 4); //battery_driver.calibrate_voltage_divider(15000.0, 4);
//battery_driver.calibrate_sense_resistor(1520); //battery_driver.calibrate_sense_resistor(1530);
//let mut data = 0_u8;
//data.set_bit(0, true); //led mode
//data.set_bit(1, false); // led mode
//data.set_bit(2, false); //led mode
//data.set_bit(3, true); //led always on
//battery_driver.set_led_mode(data);
//battery_driver.unsealed();
battery_driver.it_enable();
loop { loop {
let flags = battery_driver.get_flags_decoded();
println!("Flags {:?}", flags);
let chem_id = battery_driver.chem_id(); let chem_id = battery_driver.chem_id();
let bat_temp = battery_driver.temperature(); let bat_temp = battery_driver.internal_temperature();
let temp_c = Temperature::from_kelvin(bat_temp as f64/10_f64).as_celsius(); let temp_c = Temperature::from_kelvin(bat_temp as f64/10_f64).as_celsius();
let voltage = battery_driver.voltage(); let voltage = battery_driver.voltage();
let current = battery_driver.current(); let current = battery_driver.current();