DS2438 module integrated

This commit is contained in:
Ollo 2021-02-16 22:25:12 +01:00
parent 17b0bb435c
commit 5deea587a8
4 changed files with 469 additions and 67 deletions

View File

@ -53,8 +53,9 @@
#define MOIST_SENSOR_MAX_ADC (85 * 4095 / 100)
#define MOIST_SENSOR_MIN_ADC (25 * 4095 / 100)
#define SOLAR_VOLT(adc) ADC_TO_VOLT_WITH_MULTI(adc, 4.0306) /**< 100k and 33k voltage dividor */
#define ADC_5V_TO_3V3(adc) ADC_TO_VOLT_WITH_MULTI(adc, 1.69) /**< 33k and 47k8 voltage dividor */
#define SOLAR_VOLT_FACTOR 2
#define BATTSENSOR_INDEX_SOLAR 0
#define BATTSENSOR_INDEX_BATTERY 1
#define MS_TO_S 1000
#define SENSOR_LIPO 34 /**< GPIO 34 (ADC1) */

112
esp32/include/DS2438.h Normal file
View File

@ -0,0 +1,112 @@
/*
* DS2438.h
*
* by Joe Bechter
*
* (C) 2012, bechter.com
*
* All files, software, schematics and designs are provided as-is with no warranty.
* All files, software, schematics and designs are for experimental/hobby use.
* Under no circumstances should any part be used for critical systems where safety,
* life or property depends upon it. You are responsible for all use.
* You are free to use, modify, derive or otherwise extend for your own non-commercial purposes provided
* 1. No part of this software or design may be used to cause injury or death to humans or animals.
* 2. Use is non-commercial.
* 3. Credit is given to the author (i.e. portions © bechter.com), and provide a link to the original source.
*
*/
#ifndef DS2438_h
#define DS2438_h
#include <Arduino.h>
#include <OneWire.h>
#define DS2438_TEMPERATURE_CONVERSION_COMMAND 0x44
#define DS2438_VOLTAGE_CONVERSION_COMMAND 0xb4
#define DS2438_WRITE_SCRATCHPAD_COMMAND 0x4e
#define DS2438_COPY_SCRATCHPAD_COMMAND 0x48
#define DS2438_READ_SCRATCHPAD_COMMAND 0xbe
#define DS2438_RECALL_MEMORY_COMMAND 0xb8
#define PAGE_MIN 0
#define PAGE_MAX 7
#define DS2438_CHA 0
#define DS2438_CHB 1
#define DS2438_MODE_CHA 0x01
#define DS2438_MODE_CHB 0x02
#define DS2438_MODE_TEMPERATURE 0x04
#define DS2438_TEMPERATURE_DELAY 10
#define DS2438_VOLTAGE_CONVERSION_DELAY 8
#define DEFAULT_PAGE0(var) uint8_t var[8] { \
0b00001011 /* X, ADB=0, NVB=0, TB=0, AD=1, EE=0, CA=1, IAD=1 */, \
0, /* Temperatur */ \
0, /* Temperatur */ \
0, /* Voltage */ \
0, /* Voltage */ \
0, /* Current */ \
0, /* Current */ \
0 /* Threashold */ \
}
typedef struct PageOne {
uint8_t eleapsedTimerByte0; /**< LSB of timestamp */
uint8_t eleapsedTimerByte1;
uint8_t eleapsedTimerByte2;
uint8_t eleapsedTimerByte3; /**< MSB of timestamp */
uint8_t ICA; /**< Integrated Current Accumulator (current flowing into and out of the battery) */
uint8_t offsetRegisterByte0; /**< Offset for ADC calibdation */
uint8_t offsetRegisterByte1; /**< Offset for ADC calibdation */
uint8_t reserved;
} PageOne_t;
typedef struct PageSeven {
uint8_t userByte0;
uint8_t userByte1;
uint8_t userByte2;
uint8_t userByte3;
uint8_t CCA0; /**< Charging Current Accumulator (CCA) */
uint8_t CCA1; /**< Charging Current Accumulator (CCA) */
uint8_t DCA0; /**< Discharge Current Accumulator (DCA) */
uint8_t DCA1; /**< Discharge Current Accumulator (DCA) */
} PageSeven_t;
typedef uint8_t DeviceAddress[8];
class DS2438 {
public:
DS2438(OneWire *ow, float currentShunt);
DS2438(OneWire *ow, uint8_t *address);
void begin();
void update();
double getTemperature();
float getVoltage(int channel=DS2438_CHA);
float getCurrent();
boolean isError();
boolean isFound();
private:
bool validAddress(const uint8_t*);
bool validFamily(const uint8_t* deviceAddress);
bool deviceFound = false;
OneWire *_ow;
DeviceAddress _address;
uint8_t _mode;
double _temperature;
float _voltageA;
float _voltageB;
float _current;
float _currentShunt;
boolean _error;
boolean startConversion(int channel, boolean doTemperature);
boolean selectChannel(int channel);
void writePage(int page, uint8_t *data);
boolean readPage(int page, uint8_t *data);
};
#endif

286
esp32/src/DS2438.cpp Normal file
View File

@ -0,0 +1,286 @@
/*
* DS2438.cpp
*
* by Joe Bechter
*
* (C) 2012, bechter.com
*
* All files, software, schematics and designs are provided as-is with no warranty.
* All files, software, schematics and designs are for experimental/hobby use.
* Under no circumstances should any part be used for critical systems where safety,
* life or property depends upon it. You are responsible for all use.
* You are free to use, modify, derive or otherwise extend for your own non-commercial purposes provided
* 1. No part of this software or design may be used to cause injury or death to humans or animals.
* 2. Use is non-commercial.
* 3. Credit is given to the author (i.e. portions © bechter.com), and provide a link to the original source.
*
*/
#include "DS2438.h"
// DSROM FIELDS
#define DSROM_FAMILY 0
#define DSROM_CRC 7
#define DS2438MODEL 0x26
DS2438::DS2438(OneWire *ow, float currentShunt = 1.0f) {
_ow = ow;
_currentShunt = currentShunt;
};
void DS2438::begin(){
DeviceAddress searchDeviceAddress;
_ow->reset_search();
memset(searchDeviceAddress,0, 8);
_temperature = 0;
_voltageA = 0.0;
_voltageB = 0.0;
_error = true;
_mode = (DS2438_MODE_CHA | DS2438_MODE_CHB | DS2438_MODE_TEMPERATURE);
deviceFound = false; // Reset the number of devices when we enumerate wire devices
while (_ow->search(searchDeviceAddress)) {
if (validAddress(searchDeviceAddress)) {
if (validFamily(searchDeviceAddress)) {
memcpy(_address,searchDeviceAddress,8);
DEFAULT_PAGE0(defaultConfig);
writePage(0, defaultConfig);
deviceFound = true;
}
}
}
}
bool DS2438::isFound(){
return deviceFound;
}
bool DS2438::validAddress(const uint8_t* deviceAddress) {
return (_ow->crc8(deviceAddress, 7) == deviceAddress[DSROM_CRC]);
}
bool DS2438::validFamily(const uint8_t* deviceAddress) {
switch (deviceAddress[DSROM_FAMILY]) {
case DS2438MODEL:
return true;
default:
return false;
}
}
void DS2438::update() {
uint8_t data[9];
_error = true;
if(!isFound()){
return;
}
if (_mode & DS2438_MODE_CHA || _mode == DS2438_MODE_TEMPERATURE) {
boolean doTemperature = _mode & DS2438_MODE_TEMPERATURE;
if (!startConversion(DS2438_CHA, doTemperature)) {
Serial.println("Error starting temp conversion ds2438 channel a");
return;
}
if (!readPage(0, data)){
Serial.println("Error reading zero page ds2438 channel a");
return;
}
Serial.print(data[0],16);
Serial.print(" ");
Serial.print(data[1],16);
Serial.print(" ");
Serial.print(data[2],16);
Serial.print(" ");
Serial.print(data[3],16);
Serial.print(" ");
Serial.print(data[4],16);
Serial.print(" ");
Serial.print(data[5],16);
Serial.print(" ");
Serial.print(data[6],16);
Serial.print(" ");
Serial.println(data[7],16);
if (doTemperature) {
_temperature = (double)(((((int16_t)data[2]) << 8) | (data[1] & 0x0ff)) >> 3) * 0.03125;
}
if (_mode & DS2438_MODE_CHA) {
_voltageA = (((data[4] << 8) & 0x00300) | (data[3] & 0x0ff)) / 100.0;
}
}
if (_mode & DS2438_MODE_CHB) {
boolean doTemperature = _mode & DS2438_MODE_TEMPERATURE && !(_mode & DS2438_MODE_CHA);
if (!startConversion(DS2438_CHB, doTemperature)) {
Serial.println("Error starting temp conversion channel b ds2438");
return;
}
if (!readPage(0, data)){
Serial.println("Error reading zero page ds2438 channel b");
return;
}
if (doTemperature) {
int16_t upperByte = ((int16_t)data[2]) << 8;
int16_t lowerByte = data[1] >> 3;
int16_t fullByte = (upperByte | lowerByte);
_temperature = ((double)fullByte) * 0.03125;
}
_voltageB = (((data[4] << 8) & 0x00300) | (data[3] & 0x0ff)) / 100.0;
}
int16_t upperByte = ((int16_t)data[6]) << 8;
int16_t lowerByte = data[5];
int16_t fullByte = (int16_t)(upperByte | lowerByte);
float fullByteb = fullByte;
_current = (fullByteb) / ((4096.0f * _currentShunt));
_error = false;
Serial.print(data[0],16);
Serial.print(" ");
Serial.print(data[1],16);
Serial.print(" ");
Serial.print(data[2],16);
Serial.print(" ");
Serial.print(data[3],16);
Serial.print(" ");
Serial.print(data[4],16);
Serial.print(" ");
Serial.print(data[5],16);
Serial.print(" ");
Serial.print(data[6],16);
Serial.print(" ");
Serial.println(data[7],16);
Serial.println("-");
uint16_t ICA = 0;
if (readPage(1, data)){
PageOne_t *pOne = (PageOne_t *) data;
Serial.println(pOne->ICA);
float Ah = pOne->ICA / (2048.0f * _currentShunt);
Serial.print("Ah=");
Serial.println(Ah);
ICA = pOne->ICA;
}
if (readPage(7, data)){
PageSeven_t *pSeven = (PageSeven_t *) data;
int16_t CCA = pSeven->CCA0 | ((int16_t) pSeven->CCA1) << 8;
int16_t DCA = pSeven->DCA0 | ((int16_t) pSeven->DCA1) << 8;
Serial.println("ICA, DCA, CCA");
Serial.print(ICA);
Serial.print(", ");
Serial.print(DCA);
Serial.print(", ");
Serial.println(CCA);
}
}
double DS2438::getTemperature() {
return _temperature;
}
float DS2438::getVoltage(int channel) {
if (channel == DS2438_CHA) {
return _voltageA;
} else if (channel == DS2438_CHB) {
return _voltageB;
} else {
return 0.0;
}
}
float DS2438::getCurrent() {
return _current;
}
boolean DS2438::isError() {
return _error;
}
boolean DS2438::startConversion(int channel, boolean doTemperature) {
if(!isFound()){
return false;
}
if (!selectChannel(channel)){
return false;
}
_ow->reset();
_ow->select(_address);
if (doTemperature) {
_ow->write(DS2438_TEMPERATURE_CONVERSION_COMMAND, 0);
delay(DS2438_TEMPERATURE_DELAY);
_ow->reset();
_ow->select(_address);
}
_ow->write(DS2438_VOLTAGE_CONVERSION_COMMAND, 0);
delay(DS2438_VOLTAGE_CONVERSION_DELAY);
return true;
}
boolean DS2438::selectChannel(int channel) {
if(!isFound()){
return false;
}
uint8_t data[9];
if (readPage(0, data)) {
if (channel == DS2438_CHB){
data[0] = data[0] | 0x08;
}
else {
data[0] = data[0] & 0xf7;
}
writePage(0, data);
return true;
}
Serial.println("Could not read page zero data");
return false;
}
void DS2438::writePage(int page, uint8_t *data) {
_ow->reset();
_ow->select(_address);
_ow->write(DS2438_WRITE_SCRATCHPAD_COMMAND, 0);
if ((page >= PAGE_MIN) && (page <= PAGE_MAX)) {
_ow->write(page, 0);
} else {
return;
}
for (int i = 0; i < 8; i++){
_ow->write(data[i], 0);
}
_ow->reset();
_ow->select(_address);
_ow->write(DS2438_COPY_SCRATCHPAD_COMMAND, 0);
_ow->write(page, 0);
}
boolean DS2438::readPage(int page, uint8_t *data) {
//TODO if all data is 0 0 is a valid crc, but most likly not as intended
_ow->reset();
_ow->select(_address);
_ow->write(DS2438_RECALL_MEMORY_COMMAND, 0);
if ((page >= PAGE_MIN) && (page <= PAGE_MAX)) {
_ow->write(page, 0);
} else {
return false;
}
_ow->reset();
_ow->select(_address);
_ow->write(DS2438_READ_SCRATCHPAD_COMMAND, 0);
_ow->write(page, 0);
for (int i = 0; i < 9; i++){
data[i] = _ow->read();
}
return _ow->crc8(data, 8) == data[8];
}

View File

@ -25,6 +25,7 @@
#include <stdint.h>
#include <math.h>
#include <OneWire.h>
#include "DS2438.h"
/******************************************************************************
* DEFINES
@ -91,9 +92,15 @@ RunningMedian solarRawSensor = RunningMedian(VOLT_SENSOR_MEASURE_SERIES);
RunningMedian waterRawSensor = RunningMedian(5);
RunningMedian lipoTempSensor = RunningMedian(TEMP_SENSOR_MEASURE_SERIES);
RunningMedian waterTempSensor = RunningMedian(TEMP_SENSOR_MEASURE_SERIES);
float mBatteryVoltage = 0.0f;
float mSolarVoltage = 0.0f;
float mChipTemp = 0.0f;
/*************************** Hardware abstraction *****************************/
OneWire oneWire(SENSOR_DS18B20);
DallasTemperature sensors(&oneWire);
DS2438 battery(&oneWire,0.1f);
Plant mPlants[MAX_PLANTS] = {
Plant(SENSOR_PLANT0, OUTPUT_PUMP0, 0, &plant0, &mSetting0),
@ -108,16 +115,6 @@ Plant mPlants[MAX_PLANTS] = {
* LOCAL FUNCTIONS
******************************************************************************/
float getBatteryVoltage()
{
return ADC_5V_TO_3V3(lipoRawSensor.getAverage());
}
float getSolarVoltage()
{
return SOLAR_VOLT(solarRawSensor.getAverage());
}
void setMoistureTrigger(int plantId, long value)
{
if ((plantId >= 0) && (plantId < MAX_PLANTS))
@ -176,17 +173,52 @@ long getDistance()
}
/**
* @brief Read Voltage
* @brief Read Voltage and Temperatur
* Read the battery voltage and the current voltage, provided by the solar panel
*/
void readSystemSensors()
{
int timeoutTemp = millis() + TEMPERATUR_TIMEOUT;
int sensorCount = 0;
rtcLastLipoTemp = lipoTempSensor.getAverage();
rtcLastWaterTemp = waterTempSensor.getAverage();
/* Required to read the temperature at least once */
while (sensorCount == 0 && millis() < timeoutTemp)
{
sensors.begin();
battery.begin();
sensorCount = sensors.getDeviceCount();
Serial << "Waitloop: One wire count: " << sensorCount << endl;
delay(200);
}
Serial << "One wire count: " << sensorCount << endl;
/* Measure temperature */
if (sensorCount > 0)
{
sensors.requestTemperatures();
}
for (int i = 0; i < sensorCount; i++)
{
Serial << "OnwWire sensor " << i << " has value " << sensors.getTempCByIndex(i) << endl;
}
// Update battery chip data
battery.update();
mSolarVoltage = battery.getVoltage(BATTSENSOR_INDEX_SOLAR) * SOLAR_VOLT_FACTOR;
mBatteryVoltage = battery.getVoltage(BATTSENSOR_INDEX_BATTERY);
mChipTemp = battery.getTemperature();
for (int i = 0; i < VOLT_SENSOR_MEASURE_SERIES; i++)
{
lipoRawSensor.add(analogRead(SENSOR_LIPO));
solarRawSensor.add(analogRead(SENSOR_SOLAR));
}
Serial << "Lipo " << lipoRawSensor.getAverage() << " -> " << getBatteryVoltage() << endl;
Serial << "Lipo " << lipoRawSensor.getAverage() << " -> " << mBatteryVoltage << endl;
rtcLastBatteryVoltage = mBatteryVoltage;
rtcLastSolarVoltage = mSolarVoltage;
}
long getCurrentTime()
@ -293,9 +325,9 @@ void mode2MQTT()
lastWaterValue = waterRawSensor.getAverage();
sensorLipo.setProperty("percent").send(String(100 * lipoRawSensor.getAverage() / 4095));
sensorLipo.setProperty("volt").send(String(getBatteryVoltage()));
sensorLipo.setProperty("volt").send(String(mBatteryVoltage));
sensorSolar.setProperty("percent").send(String((100 * solarRawSensor.getAverage()) / 4095));
sensorSolar.setProperty("volt").send(String(getSolarVoltage()));
sensorSolar.setProperty("volt").send(String(mSolarVoltage));
startupReason.setProperty("startupReason").send(String(wakeUpReason));
rtcLipoTempIndex = lipoSensorIndex.get();
@ -330,6 +362,8 @@ void mode2MQTT()
delay(100);
sensors.begin();
Serial << "Reset 1-Wire Bus" << endl;
// Setup Battery sensor DS2438
battery.begin();
}
for(j=0; j < TEMP_SENSOR_MEASURE_SERIES && isnan(lipoTempCurrent); j++) {
@ -394,10 +428,11 @@ void mode2MQTT()
}
if (lastPumpRunning == -1 || !hasWater)
{
if (getSolarVoltage() < SOLAR_CHARGE_MIN_VOLTAGE)
if (mSolarVoltage < SOLAR_CHARGE_MIN_VOLTAGE)
{
gotoMode2AfterThisTimestamp = getCurrentTime() + maxTimeBetweenMQTTUpdates.get();
Serial.println("No pumps to activate and low light, deepSleepNight");
Serial.print(mSolarVoltage);
Serial.println("V! No pumps to activate and low light, deepSleepNight");
espDeepSleepFor(deepSleepNightTime.get());
rtcDeepSleepTime = deepSleepNightTime.get();
}
@ -530,8 +565,6 @@ int readTemp() {
bool readSensors()
{
bool leaveMode1 = false;
int timeoutTemp = millis() + TEMPERATUR_TIMEOUT;
int sensorCount = 0;
Serial << "Read Sensors" << endl;
@ -567,52 +600,24 @@ bool readSensors()
}
}
if (abs(getBatteryVoltage() - rtcLastBatteryVoltage) > LIPO_DELTA_VOLT_ADC)
if (abs(mBatteryVoltage - rtcLastBatteryVoltage) > LIPO_DELTA_VOLT_ADC)
{
wakeUpReason = WAKEUP_REASON_BATTERY_CHANGE;
leaveMode1 = true;
}
if (abs(getSolarVoltage() - rtcLastSolarVoltage) > SOLAR_DELTA_VOLT_ADC)
if (abs(mSolarVoltage - rtcLastSolarVoltage) > SOLAR_DELTA_VOLT_ADC)
{
wakeUpReason = WAKEUP_REASON_SOLAR_CHANGE;
leaveMode1 = true;
}
rtcLastLipoTemp = lipoTempSensor.getAverage();
rtcLastWaterTemp = waterTempSensor.getAverage();
rtcLastBatteryVoltage = getBatteryVoltage();
rtcLastSolarVoltage = getSolarVoltage();
/* Required to read the temperature at least once */
while (sensorCount == 0 && millis() < timeoutTemp)
{
sensors.begin();
sensorCount = sensors.getDeviceCount();
Serial << "Waitloop: One wire count: " << sensorCount << endl;
delay(200);
}
Serial << "One wire count: " << sensorCount << endl;
/* Measure temperature */
if (sensorCount > 0)
{
sensors.requestTemperatures();
}
/* Read the distance and give the temperature sensors some time */
readDistance();
Serial << "Distance sensor " << waterRawSensor.getAverage() << " cm" << endl;
/* Retreive temperatures */
if (sensorCount > 0)
{
// check if chip needs to start into full operational mode
leaveMode1 |= readTemp();
for (int i = 0; i < sensorCount; i++)
{
Serial << "OnwWire sensor " << i << " has value " << sensors.getTempCByIndex(i) << endl;
}
if (abs(lipoTempSensor.getAverage() - rtcLastLipoTemp) > TEMPERATURE_DELTA_TRIGGER_IN_C)
{
leaveMode1 = true;
@ -623,7 +628,6 @@ bool readSensors()
wakeUpReason = WAKEUP_REASON_TEMP2_CHANGE;
leaveMode1 = true;
}
}
/* deactivate the sensors */
digitalWrite(OUTPUT_SENSOR, LOW);
@ -679,8 +683,7 @@ void onHomieEvent(const HomieEvent &event)
int determineNextPump()
{
float solarValue = getSolarVoltage();
bool isLowLight = (solarValue > SOLAR_CHARGE_MIN_VOLTAGE || solarValue < SOLAR_CHARGE_MAX_VOLTAGE);
bool isLowLight = (mSolarVoltage > SOLAR_CHARGE_MIN_VOLTAGE || mSolarVoltage < SOLAR_CHARGE_MAX_VOLTAGE);
//FIXME instead of for, use sorted by last activation index to ensure equal runtime?
@ -937,10 +940,10 @@ void setup()
// Big TODO use here the settings in RTC_Memory
//Panik mode, the Lipo is empty, sleep a long long time:
if ((getBatteryVoltage() < MINIMUM_LIPO_VOLT) &&
(getBatteryVoltage() > NO_LIPO_VOLT))
if ((mBatteryVoltage < MINIMUM_LIPO_VOLT) &&
(mBatteryVoltage > NO_LIPO_VOLT))
{
Serial << PANIK_MODE_DEEPSLEEP << " s lipo " << getBatteryVoltage() << "V" << endl;
Serial << PANIK_MODE_DEEPSLEEP << " s lipo " << mBatteryVoltage << "V" << endl;
esp_sleep_enable_timer_wakeup(PANIK_MODE_DEEPSLEEP_US);
esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_PERIPH, ESP_PD_OPTION_OFF);
esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_FAST_MEM, ESP_PD_OPTION_OFF);