added raw moisture, improved pct calc , formating

This commit is contained in:
Empire 2020-11-04 21:57:40 +01:00
parent fd28ffcfaf
commit 503c2b73b9
10 changed files with 555 additions and 409 deletions

View File

@ -11,55 +11,57 @@
#ifndef CONTROLLER_CONFIG_H
#define CONTROLLER_CONFIG_H
#define FIRMWARE_VERSION "1.0.7"
#define FIRMWARE_VERSION "1.0.7"
#define ADC_TO_VOLT(adc) ((adc) * 3.3 ) / 4095)
#define ADC_TO_VOLT_WITH_MULTI(adc, multi) (((adc) * 3.3 * (multi)) / 4095)
#define ADC_TO_VOLT_WITH_MULTI(adc, multi) (((adc)*3.3 * (multi)) / 4095)
#define MOIST_SENSOR_MAX_ADC 85 * 4095 / 100
#define MOIST_SENSOR_MIN_ADC 25 * 4095 / 100
#define SOLAR_VOLT(adc) ADC_TO_VOLT_WITH_MULTI(adc, 4.0306) /**< 100k and 33k voltage dividor */
#define ADC_5V_TO_3V3(adc) ADC_TO_VOLT_WITH_MULTI(adc, 1.7) /**< 33k and 47k8 voltage dividor */
#define MS_TO_S 1000
#define SOLAR_VOLT(adc) ADC_TO_VOLT_WITH_MULTI(adc, 4.0306) /**< 100k and 33k voltage dividor */
#define ADC_5V_TO_3V3(adc) ADC_TO_VOLT_WITH_MULTI(adc, 1.7) /**< 33k and 47k8 voltage dividor */
#define MS_TO_S 1000
#define SENSOR_LIPO 34 /**< GPIO 34 (ADC1) */
#define SENSOR_SOLAR 35 /**< GPIO 35 (ADC1) */
#define SENSOR_PLANT0 32 /**< GPIO 32 (ADC1) */
#define SENSOR_PLANT1 33 /**< GPIO 33 (ADC1) */
#define SENSOR_PLANT2 25 /**< GPIO 25 (ADC2) */
#define SENSOR_PLANT3 26 /**< GPIO 26 (ADC2) */
#define SENSOR_PLANT4 27 /**< GPIO 27 (ADC2) */
#define SENSOR_PLANT5 14 /**< GPIO 14 (ADC2) */
#define SENSOR_PLANT6 12 /**< GPIO 12 (ADC2) */
#define SENSOR_LIPO 34 /**< GPIO 34 (ADC1) */
#define SENSOR_SOLAR 35 /**< GPIO 35 (ADC1) */
#define SENSOR_PLANT0 32 /**< GPIO 32 (ADC1) */
#define SENSOR_PLANT1 33 /**< GPIO 33 (ADC1) */
#define SENSOR_PLANT2 25 /**< GPIO 25 (ADC2) */
#define SENSOR_PLANT3 26 /**< GPIO 26 (ADC2) */
#define SENSOR_PLANT4 27 /**< GPIO 27 (ADC2) */
#define SENSOR_PLANT5 14 /**< GPIO 14 (ADC2) */
#define SENSOR_PLANT6 12 /**< GPIO 12 (ADC2) */
#define OUTPUT_PUMP0 23 /**< GPIO 23 */
#define OUTPUT_PUMP1 22 /**< GPIO 22 */
#define OUTPUT_PUMP2 21 /**< GPIO 21 */
#define OUTPUT_PUMP3 19 /**< GPIO 19 */
#define OUTPUT_PUMP4 18 /**< GPIO 18 */
#define OUTPUT_PUMP5 5 /**< GPIO 5 */
#define OUTPUT_PUMP6 15 /**< GPIO 15 */
#define OUTPUT_PUMP0 23 /**< GPIO 23 */
#define OUTPUT_PUMP1 22 /**< GPIO 22 */
#define OUTPUT_PUMP2 21 /**< GPIO 21 */
#define OUTPUT_PUMP3 19 /**< GPIO 19 */
#define OUTPUT_PUMP4 18 /**< GPIO 18 */
#define OUTPUT_PUMP5 5 /**< GPIO 5 */
#define OUTPUT_PUMP6 15 /**< GPIO 15 */
#define OUTPUT_SENSOR 16 /**< GPIO 16 - Enable Sensors */
#define OUTPUT_PUMP 13 /**< GPIO 13 - Enable Pumps */
#define OUTPUT_SENSOR 16 /**< GPIO 16 - Enable Sensors */
#define OUTPUT_PUMP 13 /**< GPIO 13 - Enable Pumps */
#define SENSOR_DS18B20 2 /**< GPIO 2 */
#define BUTTON 0 /**< GPIO 0 */
#define SENSOR_DS18B20 2 /**< GPIO 2 */
#define BUTTON 0 /**< GPIO 0 */
#define MIN_TIME_RUNNING 5UL /**< Amount of seconds the controller must stay awoken */
#define MAX_PLANTS 7
#define MINIMUM_LIPO_VOLT 3.6f /**< Minimum voltage of the Lipo, that must be present */
#define NO_LIPO_VOLT 2.0f /**< No Lipo connected */
#define MINIMUM_SOLAR_VOLT 4.0f /**< Minimum voltage of the sun, to detect daylight */
#define MIN_TIME_RUNNING 5UL /**< Amount of seconds the controller must stay awoken */
#define MAX_PLANTS 7
#define MINIMUM_LIPO_VOLT 3.6f /**< Minimum voltage of the Lipo, that must be present */
#define NO_LIPO_VOLT 2.0f /**< No Lipo connected */
#define MINIMUM_SOLAR_VOLT 4.0f /**< Minimum voltage of the sun, to detect daylight */
#define SOLAR_CHARGE_MIN_VOLTAGE 7
#define SOLAR_CHARGE_MAX_VOLTAGE 9
#define HC_SR04 /**< Ultrasonic distance sensor to measure water level */
#define SENSOR_SR04_ECHO 17 /**< GPIO 17 - Echo */
#define SENSOR_SR04_TRIG 23 /**< GPIO 23 - Trigger */
#define HC_SR04 /**< Ultrasonic distance sensor to measure water level */
#define SENSOR_SR04_ECHO 17 /**< GPIO 17 - Echo */
#define SENSOR_SR04_TRIG 23 /**< GPIO 23 - Trigger */
#define MAX_CONFIG_SETTING_ITEMS 50 /**< Parameter, that can be configured in Homie */
#define PANIK_MODE_DEEPSLEEP (60*60*5U) /**< 5 hours in usecond */
#define PANIK_MODE_DEEPSLEEP_US (PANIK_MODE_DEEPSLEEP*1000*1000)
#define PANIK_MODE_DEEPSLEEP (60 * 60 * 5U) /**< 5 hours in usecond */
#define PANIK_MODE_DEEPSLEEP_US (PANIK_MODE_DEEPSLEEP * 1000 * 1000)
#define TEMPERATURE_DELTA_TRIGGER_IN_C 1
#define MOIST_DELTA_TRIGGER_ADC 1337

View File

@ -21,32 +21,36 @@
#include <OneWire.h>
class Ds18B20 {
private:
OneWire* mDs;
int foundDevices;
public:
Ds18B20(int pin) {
this->mDs = new OneWire(pin);
}
class Ds18B20
{
private:
OneWire *mDs;
int foundDevices;
~Ds18B20() {
delete this->mDs;
}
/**
public:
Ds18B20(int pin)
{
this->mDs = new OneWire(pin);
}
~Ds18B20()
{
delete this->mDs;
}
/**
* @brief read amount sensots
* check for available of DS18B20 sensors
* @return amount of sensors
*/
int readDevices(void);
int readDevices(void);
/**
/**
* @brief Read all temperatures in celsius
*
* @param pTemperatures array of float valuies
* @param maxTemperatures size of the given array
* @return int amount of read temperature values
*/
int readAllTemperatures(float* pTemperatures, int maxTemperatures);
int readAllTemperatures(float *pTemperatures, int maxTemperatures);
};
#endif

View File

@ -45,17 +45,17 @@ HomieSetting<long> waterLevelMax("watermaxlevel", "distance (mm) at maximum wate
HomieSetting<long> waterLevelMin("waterminlevel", "distance (mm) at minimum water level (pumps still covered)");
HomieSetting<long> waterLevelWarn("waterlevelwarn", "warn (mm) if below this water level %");
HomieSetting<long> waterLevelVol("waterVolume", "(ml) between minimum and maximum");
HomieSetting<const char *>ntpServer("ntpServer", "NTP server (pool.ntp.org as default)");
HomieSetting<const char *> ntpServer("ntpServer", "NTP server (pool.ntp.org as default)");
/** Plant specific ones */
#define GENERATE_PLANT(plant, strplant) \
HomieSetting<long> mSensorDry##plant = HomieSetting<long>("moistdry" strplant, "Plant " strplant "- Moist sensor dry threshold"); \
HomieSetting<long> mPumpAllowedHourRangeStart##plant = HomieSetting<long>("rangehourstart" strplant, "Plant" strplant " - Range pump allowed hour start (0-23)"); \
HomieSetting<long> mPumpAllowedHourRangeEnd##plant = HomieSetting<long>("rangehourend" strplant, "Plant" strplant " - Range pump allowed hour end (0-23)"); \
#define GENERATE_PLANT(plant, strplant) \
HomieSetting<long> mSensorDry##plant = HomieSetting<long>("moistdry" strplant, "Plant " strplant "- Moist sensor dry threshold"); \
HomieSetting<long> mPumpAllowedHourRangeStart##plant = HomieSetting<long>("rangehourstart" strplant, "Plant" strplant " - Range pump allowed hour start (0-23)"); \
HomieSetting<long> mPumpAllowedHourRangeEnd##plant = HomieSetting<long>("rangehourend" strplant, "Plant" strplant " - Range pump allowed hour end (0-23)"); \
HomieSetting<bool> mPumpOnlyWhenLowLight##plant = HomieSetting<bool>("onlyWhenLowLightZ" strplant, "Plant" strplant " - Enable the Pump only, when there is light but not enought to charge battery"); \
HomieSetting<long> mPumpCooldownInHours##plant = HomieSetting<long>("cooldownpump" strplant, "Plant" strplant " - How long to wait until the pump is activated again (minutes)"); \
PlantSettings_t mSetting##plant = { &mSensorDry##plant, &mPumpAllowedHourRangeStart##plant, &mPumpAllowedHourRangeEnd##plant, &mPumpOnlyWhenLowLight##plant, &mPumpCooldownInHours##plant };
HomieSetting<long> mPumpCooldownInHours##plant = HomieSetting<long>("cooldownpump" strplant, "Plant" strplant " - How long to wait until the pump is activated again (minutes)"); \
PlantSettings_t mSetting##plant = {&mSensorDry##plant, &mPumpAllowedHourRangeStart##plant, &mPumpAllowedHourRangeEnd##plant, &mPumpOnlyWhenLowLight##plant, &mPumpCooldownInHours##plant};
GENERATE_PLANT(0, "0");
GENERATE_PLANT(1, "1");
@ -65,6 +65,4 @@ GENERATE_PLANT(4, "4");
GENERATE_PLANT(5, "5");
GENERATE_PLANT(6, "6");
#endif /* HOMIE_PLANT_CONFIG_H */

View File

@ -13,14 +13,15 @@
#include <Homie.h>
#define DEACTIVATED_PLANT 5000
#define DEACTIVATED_PLANT 5000
typedef struct PlantSettings_t {
HomieSetting<long>* pSensorDry;
HomieSetting<long>* pPumpAllowedHourRangeStart;
HomieSetting<long>* pPumpAllowedHourRangeEnd;
HomieSetting<bool>* pPumpOnlyWhenLowLight;
HomieSetting<long>* pPumpCooldownInHours;
typedef struct PlantSettings_t
{
HomieSetting<long> *pSensorDry;
HomieSetting<long> *pPumpAllowedHourRangeStart;
HomieSetting<long> *pPumpAllowedHourRangeEnd;
HomieSetting<bool> *pPumpOnlyWhenLowLight;
HomieSetting<long> *pPumpCooldownInHours;
} PlantSettings_t;
#endif

View File

@ -15,17 +15,18 @@
#include "HomieTypes.h"
#include "RunningMedian.h"
class Plant {
class Plant
{
private:
RunningMedian moistureRaw = RunningMedian(5);
HomieNode* mPlant = NULL;
int mPinSensor=0; /**< Pin of the moist sensor */
int mPinPump=0; /**< Pin of the pump */
HomieNode *mPlant = NULL;
int mPinSensor = 0; /**< Pin of the moist sensor */
int mPinPump = 0; /**< Pin of the pump */
bool mConnected = false;
public:
PlantSettings_t* mSetting;
PlantSettings_t *mSetting;
/**
* @brief Construct a new Plant object
*
@ -33,9 +34,9 @@ public:
* @param pinPump Pin of the Pump to use
*/
Plant(int pinSensor, int pinPump,
int plantId,
HomieNode* plant,
PlantSettings_t* setting);
int plantId,
HomieNode *plant,
PlantSettings_t *setting);
void postMQTTconnection(void);
@ -59,31 +60,39 @@ public:
* @return true
* @return false
*/
bool isPumpRequired() {
bool isPumpRequired()
{
bool isDry = getCurrentMoisture() > getSettingsMoisture();
bool isActive = isPumpTriggerActive();
return isDry && isActive;
}
bool isPumpTriggerActive(){
bool isPumpTriggerActive()
{
return this->mSetting->pSensorDry->get() != DEACTIVATED_PLANT;
}
float getCurrentMoisture(){
float getCurrentMoisture()
{
return this->moistureRaw.getMedian();
}
long getSettingsMoisture(){
if(this->mSetting->pSensorDry != NULL){
long getSettingsMoisture()
{
if (this->mSetting->pSensorDry != NULL)
{
return this->mSetting->pSensorDry->get();
} else {
}
else
{
return DEACTIVATED_PLANT;
}
}
HomieInternals::SendingPromise& setProperty(const String& property) const {
HomieInternals::SendingPromise &setProperty(const String &property) const
{
return mPlant->setProperty(property);
}
bool switchHandler(const HomieRange& range, const String& value);
bool switchHandler(const HomieRange &range, const String &value);
void init(void);
@ -91,16 +100,19 @@ public:
* @brief determine, if the plant was recently casted
* @param sinceLastActivation timestamp of last time
*/
bool isInCooldown(long sinceLastActivation) {
bool isInCooldown(long sinceLastActivation)
{
/* if the time difference is greater than one month, we know these are initial values */
if (sinceLastActivation > (60 * 60 * 24 * 30)) {
if (sinceLastActivation > (60 * 60 * 24 * 30))
{
return false;
}
return (this->mSetting->pPumpCooldownInHours->get() > sinceLastActivation / 3600);
}
bool isAllowedOnlyAtLowLight(void) {
bool isAllowedOnlyAtLowLight(void)
{
return this->mSetting->pPumpOnlyWhenLowLight->get();
}
};

View File

@ -17,13 +17,11 @@
// not tested ==> use at own risk :)
// #define RUNNING_MEDIAN_USE_MALLOC
// should at least be 5 to be practical,
// odd sizes results in a 'real' middle element and will be a bit faster.
// even sizes takes the average of the two middle elements as median
#define MEDIAN_MIN_SIZE 5
#define MEDIAN_MAX_SIZE 19
#define MEDIAN_MIN_SIZE 5
#define MEDIAN_MAX_SIZE 19
class RunningMedian
{
@ -45,7 +43,7 @@ public:
float getAverage(uint8_t nMedian);
float getHighest() { return getSortedElement(_cnt - 1); };
float getLowest() { return getSortedElement(0); };
float getLowest() { return getSortedElement(0); };
// get n'th element from the values in time order
float getElement(const uint8_t n);
@ -58,7 +56,6 @@ public:
// returns current used elements, getCount() <= getSize()
uint8_t getCount() { return _cnt; };
protected:
boolean _sorted;
uint8_t _size;
@ -66,8 +63,8 @@ protected:
uint8_t _idx;
#ifdef RUNNING_MEDIAN_USE_MALLOC
float * _ar;
uint8_t * _p;
float *_ar;
uint8_t *_p;
#else
float _ar[MEDIAN_MAX_SIZE];
uint8_t _p[MEDIAN_MAX_SIZE];

View File

@ -11,40 +11,45 @@
#include "DS18B20.h"
#define STARTCONV 0x44
#define READSCRATCH 0xBE // Read EEPROM
#define TEMP_LSB 0
#define TEMP_MSB 1
#define SCRATCHPADSIZE 9
#define OFFSET_CRC8 8 /**< 9th byte has the CRC of the complete data */
#define STARTCONV 0x44
#define READSCRATCH 0xBE // Read EEPROM
#define TEMP_LSB 0
#define TEMP_MSB 1
#define SCRATCHPADSIZE 9
#define OFFSET_CRC8 8 /**< 9th byte has the CRC of the complete data */
//Printf debugging
//#define DS_DEBUG
int Ds18B20::readDevices() {
int Ds18B20::readDevices()
{
byte addr[8];
int amount = -1;
while (this->mDs->search(addr)) {
while (this->mDs->search(addr))
{
amount++;
}
this->mDs->reset_search();
return amount;
}
int Ds18B20::readAllTemperatures(float* pTemperatures, int maxTemperatures) {
int Ds18B20::readAllTemperatures(float *pTemperatures, int maxTemperatures)
{
byte addr[8];
uint8_t scratchPad[SCRATCHPADSIZE];
int currentTemp = 0;
while (this->mDs->search(addr)) {
while (this->mDs->search(addr))
{
this->mDs->reset();
this->mDs->select(addr);
this->mDs->write(STARTCONV);
}
delay(750);
while (this->mDs->search(addr)) {
while (this->mDs->search(addr))
{
this->mDs->reset();
this->mDs->select(addr);
this->mDs->write(READSCRATCH);
@ -62,23 +67,27 @@ int Ds18B20::readAllTemperatures(float* pTemperatures, int maxTemperatures) {
// byte 7: DS18S20: COUNT_PER_C
// DS18B20 & DS1822: store for crc
// byte 8: SCRATCHPAD_CRC
for (uint8_t i = 0; i < 9; i++) {
for (uint8_t i = 0; i < 9; i++)
{
scratchPad[i] = this->mDs->read();
}
uint8_t crc8 = this->mDs->crc8(scratchPad, 8);
/* Only work an valid data */
if (crc8 == scratchPad[OFFSET_CRC8]) {
int16_t fpTemperature = (((int16_t) scratchPad[TEMP_MSB]) << 11)
| (((int16_t) scratchPad[TEMP_LSB]) << 3);
float celsius = (float) fpTemperature * 0.0078125;
if (crc8 == scratchPad[OFFSET_CRC8])
{
int16_t fpTemperature = (((int16_t)scratchPad[TEMP_MSB]) << 11) | (((int16_t)scratchPad[TEMP_LSB]) << 3);
float celsius = (float)fpTemperature * 0.0078125;
#ifdef DS_DEBUG
Serial.printf("\r\nTemp%d %f °C (Raw: %d, %x =? %x)\r\n", (currentTemp+1), celsius, fpTemperature, crc8, scratchPad[8]);
Serial.printf("\r\nTemp%d %f °C (Raw: %d, %x =? %x)\r\n", (currentTemp + 1), celsius, fpTemperature, crc8, scratchPad[8]);
#endif
/* check, if the buffer as some space for our data */
if (currentTemp < maxTemperatures) {
if (currentTemp < maxTemperatures)
{
pTemperatures[currentTemp] = celsius;
} else {
}
else
{
return -1;
}
}

View File

@ -12,31 +12,33 @@
#include "PlantCtrl.h"
Plant::Plant(int pinSensor, int pinPump,int plantId, HomieNode* plant, PlantSettings_t* setting) {
Plant::Plant(int pinSensor, int pinPump, int plantId, HomieNode *plant, PlantSettings_t *setting)
{
this->mPinSensor = pinSensor;
this->mPinPump = pinPump;
this->mPlant = plant;
this->mSetting = setting;
}
void Plant::init(void) {
void Plant::init(void)
{
/* Initialize Home Settings validator */
this->mSetting->pSensorDry->setDefaultValue(DEACTIVATED_PLANT);
this->mSetting->pSensorDry->setValidator([] (long candidate) {
return (((candidate >= 0) && (candidate <= 4095) ) || candidate == DEACTIVATED_PLANT);
this->mSetting->pSensorDry->setValidator([](long candidate) {
return (((candidate >= 0) && (candidate <= 4095)) || candidate == DEACTIVATED_PLANT);
});
this->mSetting->pPumpAllowedHourRangeStart->setDefaultValue(8); // start at 8:00
this->mSetting->pPumpAllowedHourRangeStart->setValidator([] (long candidate) {
return ((candidate >= 0) && (candidate <= 23) );
this->mSetting->pPumpAllowedHourRangeStart->setValidator([](long candidate) {
return ((candidate >= 0) && (candidate <= 23));
});
this->mSetting->pPumpAllowedHourRangeEnd->setDefaultValue(20); // stop pumps at 20:00
this->mSetting->pPumpAllowedHourRangeEnd->setValidator([] (long candidate) {
return ((candidate >= 0) && (candidate <= 23) );
this->mSetting->pPumpAllowedHourRangeEnd->setValidator([](long candidate) {
return ((candidate >= 0) && (candidate <= 23));
});
this->mSetting->pPumpOnlyWhenLowLight->setDefaultValue(true);
this->mSetting->pPumpCooldownInHours->setDefaultValue(20); // minutes
this->mSetting->pPumpCooldownInHours->setValidator([] (long candidate) {
return ((candidate >= 0) && (candidate <= 1024) );
this->mSetting->pPumpCooldownInHours->setValidator([](long candidate) {
return ((candidate >= 0) && (candidate <= 1024));
});
/* Initialize Hardware */
@ -45,43 +47,47 @@ void Plant::init(void) {
digitalWrite(this->mPinPump, LOW);
}
void Plant::addSenseValue(void) {
this->moistureRaw.add( analogRead(this->mPinSensor) );
void Plant::addSenseValue(void)
{
this->moistureRaw.add(analogRead(this->mPinSensor));
}
void Plant::postMQTTconnection(void) {
void Plant::postMQTTconnection(void)
{
const String OFF = String("OFF");
this->mConnected=true;
this->mConnected = true;
this->mPlant->setProperty("switch").send(OFF);
}
void Plant::deactivatePump(void) {
void Plant::deactivatePump(void)
{
digitalWrite(this->mPinPump, LOW);
if (this->mConnected) {
if (this->mConnected)
{
const String OFF = String("OFF");
this->mPlant->setProperty("switch").send(OFF);
}
}
void Plant::activatePump(void) {
void Plant::activatePump(void)
{
digitalWrite(this->mPinPump, HIGH);
if (this->mConnected) {
if (this->mConnected)
{
const String OFF = String("ON");
this->mPlant->setProperty("switch").send(OFF);
}
}
void Plant::advertise(void) {
void Plant::advertise(void)
{
// Advertise topics
this->mPlant->advertise("switch").setName("Pump 1")
.setDatatype("boolean");
this->mPlant->advertise("switch").setName("Pump 1").setDatatype("boolean");
//FIXME add .settable(this->switchHandler)
this->mPlant->advertise("moist").setName("Percent")
.setDatatype("number")
.setUnit("%");
this->mPlant->advertise("moist").setName("Percent").setDatatype("number").setUnit("%");
this->mPlant->advertise("moistraw").setName("adc").setDatatype("number").setUnit("3.3/4096V");
}
/* FIXME
bool Plant::switchHandler(const HomieRange& range, const String& value) {
if (range.isRange) return false; // only one switch is present

View File

@ -31,8 +31,8 @@ RunningMedian::RunningMedian(const uint8_t size)
_size = constrain(size, MEDIAN_MIN_SIZE, MEDIAN_MAX_SIZE);
#ifdef RUNNING_MEDIAN_USE_MALLOC
_ar = (float *) malloc(_size * sizeof(float));
_p = (uint8_t *) malloc(_size * sizeof(uint8_t));
_ar = (float *)malloc(_size * sizeof(float));
_p = (uint8_t *)malloc(_size * sizeof(uint8_t));
#endif
clear();
@ -63,18 +63,22 @@ void RunningMedian::clear()
void RunningMedian::add(float value)
{
_ar[_idx++] = value;
if (_idx >= _size) _idx = 0; // wrap around
if (_cnt < _size) _cnt++;
if (_idx >= _size)
_idx = 0; // wrap around
if (_cnt < _size)
_cnt++;
_sorted = false;
}
float RunningMedian::getMedian()
{
if (_cnt == 0) return NAN;
if (_cnt == 0)
return NAN;
if (_sorted == false) sort();
if (_sorted == false)
sort();
if (_cnt & 0x01) // is it odd sized?
if (_cnt & 0x01) // is it odd sized?
{
return _ar[_p[_cnt / 2]];
}
@ -83,7 +87,8 @@ float RunningMedian::getMedian()
float RunningMedian::getAverage()
{
if (_cnt == 0) return NAN;
if (_cnt == 0)
return NAN;
float sum = 0;
for (uint8_t i = 0; i < _cnt; i++)
@ -95,13 +100,16 @@ float RunningMedian::getAverage()
float RunningMedian::getAverage(uint8_t nMedians)
{
if ((_cnt == 0) || (nMedians == 0)) return NAN;
if ((_cnt == 0) || (nMedians == 0))
return NAN;
if (_cnt < nMedians) nMedians = _cnt; // when filling the array for first time
if (_cnt < nMedians)
nMedians = _cnt; // when filling the array for first time
uint8_t start = ((_cnt - nMedians) / 2);
uint8_t stop = start + nMedians;
if (_sorted == false) sort();
if (_sorted == false)
sort();
float sum = 0;
for (uint8_t i = start; i < stop; i++)
@ -113,7 +121,8 @@ float RunningMedian::getAverage(uint8_t nMedians)
float RunningMedian::getElement(const uint8_t n)
{
if ((_cnt == 0) || (n >= _cnt)) return NAN;
if ((_cnt == 0) || (n >= _cnt))
return NAN;
uint8_t pos = _idx + n;
if (pos >= _cnt) // faster than %
@ -125,18 +134,21 @@ float RunningMedian::getElement(const uint8_t n)
float RunningMedian::getSortedElement(const uint8_t n)
{
if ((_cnt == 0) || (n >= _cnt)) return NAN;
if ((_cnt == 0) || (n >= _cnt))
return NAN;
if (_sorted == false) sort();
if (_sorted == false)
sort();
return _ar[_p[n]];
}
// n can be max <= half the (filled) size
float RunningMedian::predict(const uint8_t n)
{
if ((_cnt == 0) || (n >= _cnt / 2)) return NAN;
if ((_cnt == 0) || (n >= _cnt / 2))
return NAN;
float med = getMedian(); // takes care of sorting !
float med = getMedian(); // takes care of sorting !
if (_cnt & 0x01)
{
return max(med - _ar[_p[_cnt / 2 - n]], _ar[_p[_cnt / 2 + n]] - med);
@ -162,7 +174,8 @@ void RunningMedian::sort()
flag = false;
}
}
if (flag) break;
if (flag)
break;
}
_sorted = true;
}

View File

@ -16,52 +16,48 @@
#include "time.h"
#include "esp_sleep.h"
#include "RunningMedian.h"
#include <arduino-timer.h>
#include <stdint.h>
const unsigned long TEMPREADCYCLE = 30000; /**< Check temperature all half minutes */
#define AMOUNT_SENOR_QUERYS 8
#define SENSOR_QUERY_SHIFTS 3
#define SOLAR4SENSORS 6.0f
#define TEMP_INIT_VALUE -999.0f
#define TEMP_MAX_VALUE 85.0f
#define HalfHour 60
#define AMOUNT_SENOR_QUERYS 8
#define SENSOR_QUERY_SHIFTS 3
#define SOLAR4SENSORS 6.0f
#define TEMP_INIT_VALUE -999.0f
#define TEMP_MAX_VALUE 85.0f
#define HalfHour 60
/********************* non volatile enable after deepsleep *******************************/
RTC_DATA_ATTR long gotoMode2AfterThisTimestamp = 0;
RTC_DATA_ATTR long rtcDeepSleepTime = 0; /**< Time, when the microcontroller shall be up again */
RTC_DATA_ATTR long rtcDeepSleepTime = 0; /**< Time, when the microcontroller shall be up again */
RTC_DATA_ATTR long rtcLastActive0 = 0;
RTC_DATA_ATTR long rtcMoistureTrigger0 = 0; /**<Level for the moisture sensor */
RTC_DATA_ATTR long rtcMoistureTrigger0 = 0; /**<Level for the moisture sensor */
RTC_DATA_ATTR long rtcLastActive1 = 0;
RTC_DATA_ATTR long rtcMoistureTrigger1 = 0; /**<Level for the moisture sensor */
RTC_DATA_ATTR long rtcMoistureTrigger1 = 0; /**<Level for the moisture sensor */
RTC_DATA_ATTR long rtcLastActive2 = 0;
RTC_DATA_ATTR long rtcMoistureTrigger2 = 0; /**<Level for the moisture sensor */
RTC_DATA_ATTR long rtcMoistureTrigger2 = 0; /**<Level for the moisture sensor */
RTC_DATA_ATTR long rtcLastActive3 = 0;
RTC_DATA_ATTR long rtcMoistureTrigger3 = 0; /**<Level for the moisture sensor */
RTC_DATA_ATTR long rtcMoistureTrigger3 = 0; /**<Level for the moisture sensor */
RTC_DATA_ATTR long rtcLastActive4 = 0;
RTC_DATA_ATTR long rtcMoistureTrigger4 = 0; /**<Level for the moisture sensor */
RTC_DATA_ATTR long rtcMoistureTrigger4 = 0; /**<Level for the moisture sensor */
RTC_DATA_ATTR long rtcLastActive5 = 0;
RTC_DATA_ATTR long rtcMoistureTrigger5 = 0; /**<Level for the moisture sensor */
RTC_DATA_ATTR long rtcMoistureTrigger5 = 0; /**<Level for the moisture sensor */
RTC_DATA_ATTR long rtcLastActive6 = 0;
RTC_DATA_ATTR long rtcMoistureTrigger6 = 0; /**<Level for the moisture sensor */
RTC_DATA_ATTR long rtcMoistureTrigger6 = 0; /**<Level for the moisture sensor */
RTC_DATA_ATTR int lastPumpRunning = 0;
RTC_DATA_ATTR long lastWaterValue = 0;
bool warmBoot = true;
bool volatile mode3Active = false; /**< Controller must not sleep */
bool volatile mode3Active = false; /**< Controller must not sleep */
bool volatile mDeepsleep = false;
int plantSensor1 = 0;
int mWaterGone = -1; /**< Amount of centimeter, where no water is seen */
int mWaterGone = -1; /**< Amount of centimeter, where no water is seen */
int readCounter = 0;
bool mConfigured = false;
auto wait4sleep = timer_create_default(); // create a timer with default settings
RTC_DATA_ATTR int gBootCount = 0;
RTC_DATA_ATTR int gCurrentPlant = 0; /**< Value Range: 1 ... 7 (0: no plant needs water) */
@ -71,52 +67,61 @@ RunningMedian waterRawSensor = RunningMedian(5);
RunningMedian temp1 = RunningMedian(5);
RunningMedian temp2 = RunningMedian(5);
Ds18B20 dallas(SENSOR_DS18B20);
Plant mPlants[MAX_PLANTS] = {
Plant(SENSOR_PLANT0, OUTPUT_PUMP0, 0, &plant0, &mSetting0),
Plant(SENSOR_PLANT1, OUTPUT_PUMP1, 1, &plant1, &mSetting1),
Plant(SENSOR_PLANT2, OUTPUT_PUMP2, 2, &plant2, &mSetting2),
Plant(SENSOR_PLANT3, OUTPUT_PUMP3, 3, &plant3, &mSetting3),
Plant(SENSOR_PLANT4, OUTPUT_PUMP4, 4, &plant4, &mSetting4),
Plant(SENSOR_PLANT5, OUTPUT_PUMP5, 5, &plant5, &mSetting5),
Plant(SENSOR_PLANT6, OUTPUT_PUMP6, 6, &plant6, &mSetting6)
};
Plant(SENSOR_PLANT0, OUTPUT_PUMP0, 0, &plant0, &mSetting0),
Plant(SENSOR_PLANT1, OUTPUT_PUMP1, 1, &plant1, &mSetting1),
Plant(SENSOR_PLANT2, OUTPUT_PUMP2, 2, &plant2, &mSetting2),
Plant(SENSOR_PLANT3, OUTPUT_PUMP3, 3, &plant3, &mSetting3),
Plant(SENSOR_PLANT4, OUTPUT_PUMP4, 4, &plant4, &mSetting4),
Plant(SENSOR_PLANT5, OUTPUT_PUMP5, 5, &plant5, &mSetting5),
Plant(SENSOR_PLANT6, OUTPUT_PUMP6, 6, &plant6, &mSetting6)};
float getBatteryVoltage(){
float getBatteryVoltage()
{
return ADC_5V_TO_3V3(lipoRawSensor.getAverage());
}
float getSolarVoltage(){
float getSolarVoltage()
{
return SOLAR_VOLT(solarRawSensor.getAverage());
}
void setMoistureTrigger(int plantId, long value){
if(plantId == 0){
void setMoistureTrigger(int plantId, long value)
{
if (plantId == 0)
{
rtcMoistureTrigger0 = value;
}
if(plantId == 1){
if (plantId == 1)
{
rtcMoistureTrigger1 = value;
}
if(plantId == 2){
if (plantId == 2)
{
rtcMoistureTrigger2 = value;
}
if(plantId == 3){
if (plantId == 3)
{
rtcMoistureTrigger3 = value;
}
if(plantId == 4){
if (plantId == 4)
{
rtcMoistureTrigger4 = value;
}
if(plantId == 5){
if (plantId == 5)
{
rtcMoistureTrigger5 = value;
}
if(plantId == 6){
if (plantId == 6)
{
rtcMoistureTrigger6 = value;
}
}
void readSystemSensors() {
void readSystemSensors()
{
lipoRawSensor.add(analogRead(SENSOR_LIPO));
solarRawSensor.add(analogRead(SENSOR_SOLAR));
}
@ -124,214 +129,265 @@ void readSystemSensors() {
int determineNextPump();
void setLastActivationForPump(int pumpId, long time);
long getCurrentTime(){
long getCurrentTime()
{
struct timeval tv_now;
gettimeofday(&tv_now, NULL);
return tv_now.tv_sec;
}
void espDeepSleepFor(long seconds, bool activatePump = false){
if(mode3Active){
void espDeepSleepFor(long seconds, bool activatePump = false)
{
if (mode3Active)
{
Serial << "abort deepsleep, mode3Active" << endl;
return;
}
for(int i = 0;i<10;i++){
for (int i = 0; i < 10; i++)
{
long cTime = getCurrentTime();
if(cTime < 100000){
if (cTime < 100000)
{
Serial << "Wait for ntp" << endl;
delay(100);
} else {
}
else
{
break;
}
}
esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_PERIPH, ESP_PD_OPTION_OFF);
esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_FAST_MEM, ESP_PD_OPTION_OFF);
esp_sleep_pd_config(ESP_PD_DOMAIN_XTAL,ESP_PD_OPTION_ON);
esp_sleep_pd_config(ESP_PD_DOMAIN_XTAL, ESP_PD_OPTION_ON);
esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_SLOW_MEM, ESP_PD_OPTION_ON);
if (activatePump) {
if (activatePump)
{
gpio_deep_sleep_hold_en();
gpio_hold_en(GPIO_NUM_13); //pump pwr
} else {
}
else
{
gpio_hold_dis(GPIO_NUM_13); //pump pwr
gpio_deep_sleep_hold_dis();
digitalWrite(OUTPUT_PUMP, LOW);
for (int i=0; i < MAX_PLANTS; i++) {
for (int i = 0; i < MAX_PLANTS; i++)
{
mPlants[i].deactivatePump();
}
}
//gpio_hold_en(GPIO_NUM_23); //p0
//FIXME fix for outher outputs
Serial.print("Trying to sleep for ");
Serial.print(seconds);
Serial.println(" seconds");
esp_sleep_enable_timer_wakeup( (seconds * 1000U * 1000U) );
mDeepsleep=true;
esp_sleep_enable_timer_wakeup((seconds * 1000U * 1000U));
mDeepsleep = true;
}
void mode2MQTT(){
void mode2MQTT()
{
readSystemSensors();
digitalWrite(OUTPUT_PUMP, LOW);
for (int i=0; i < MAX_PLANTS; i++) {
for (int i = 0; i < MAX_PLANTS; i++)
{
mPlants[i].deactivatePump();
}
if (deepSleepTime.get()) {
if (deepSleepTime.get())
{
Serial << "deepsleep time is configured to " << deepSleepTime.get() << endl;
}
/* Publish default values */
if(lastPumpRunning != -1){
long waterDiff = mWaterGone-lastWaterValue;
if (lastPumpRunning != -1)
{
long waterDiff = mWaterGone - lastWaterValue;
//TODO attribute used water in ml to plantid
}
for(int i=0; i < MAX_PLANTS; i++) {
mPlants[i].setProperty("moist").send(String(100 * mPlants[i].getSensorValue() / 4095 ));
for (int i = 0; i < MAX_PLANTS; i++)
{
long pct = 100 - map(mPlants[i].getSensorValue(), MOIST_SENSOR_MIN_ADC, MOIST_SENSOR_MAX_ADC, 0, 100);
if (pct < 0)
{
pct = 0;
}
if (pct > 100)
{
pct = 100;
}
mPlants[i].setProperty("moist").send(String(pct));
mPlants[i].setProperty("moistraw").send(String(mPlants[i].getSensorValue()));
}
sensorWater.setProperty("remaining").send(String(waterLevelMax.get() - mWaterGone ));
Serial << "W : " << mWaterGone << " cm (" << String(waterLevelMax.get() - mWaterGone ) << "%)" << endl;
sensorWater.setProperty("remaining").send(String(waterLevelMax.get() - mWaterGone));
Serial << "W : " << mWaterGone << " cm (" << String(waterLevelMax.get() - mWaterGone) << "%)" << endl;
lastWaterValue = mWaterGone;
sensorLipo.setProperty("percent").send( String(100 * lipoRawSensor.getAverage() / 4095) );
sensorLipo.setProperty("volt").send( String(getBatteryVoltage()) );
sensorSolar.setProperty("percent").send(String((100 * solarRawSensor.getAverage() ) / 4095));
sensorSolar.setProperty("volt").send( String(getSolarVoltage()) );
sensorLipo.setProperty("percent").send(String(100 * lipoRawSensor.getAverage() / 4095));
sensorLipo.setProperty("volt").send(String(getBatteryVoltage()));
sensorSolar.setProperty("percent").send(String((100 * solarRawSensor.getAverage()) / 4095));
sensorSolar.setProperty("volt").send(String(getSolarVoltage()));
float t1 = temp1.getMedian();
if (t1 != NAN) {
sensorTemp.setProperty("control").send( String(t1));
if (t1 != NAN)
{
sensorTemp.setProperty("control").send(String(t1));
}
float t2 = temp2.getMedian();
if (t2 != NAN) {
sensorTemp.setProperty("temp").send( String(t2));
if (t2 != NAN)
{
sensorTemp.setProperty("temp").send(String(t2));
}
//give mqtt time, use via publish callback instead?
delay(100);
bool lipoTempWarning = t1!=85 && t2!=85 && abs(t1 - t2) > 10;
if(lipoTempWarning){
bool lipoTempWarning = t1 != 85 && t2 != 85 && abs(t1 - t2) > 10;
if (lipoTempWarning)
{
Serial.println("Lipo temp incorrect, panic mode deepsleep TODO");
//espDeepSleepFor(PANIK_MODE_DEEPSLEEP);
//return;
}
for(int i=0; i < MAX_PLANTS; i++) {
for (int i = 0; i < MAX_PLANTS; i++)
{
setMoistureTrigger(i, mPlants[i].mSetting->pSensorDry->get());
}
bool hasWater = true;//FIXMEmWaterGone > waterLevelMin.get();
bool hasWater = true; //FIXMEmWaterGone > waterLevelMin.get();
//FIXME no water warning message
lastPumpRunning = determineNextPump();
if(lastPumpRunning != -1 && !hasWater){
if (lastPumpRunning != -1 && !hasWater)
{
Serial.println("Want to pump but no water");
}
if(lastPumpRunning != -1 && hasWater){
if (lastPumpRunning != -1 && hasWater)
{
digitalWrite(OUTPUT_PUMP, HIGH);
setLastActivationForPump(lastPumpRunning, getCurrentTime());
mPlants[lastPumpRunning].activatePump();
}
if(lastPumpRunning == -1 || !hasWater){
if(getSolarVoltage() < SOLAR_CHARGE_MIN_VOLTAGE){
gotoMode2AfterThisTimestamp = getCurrentTime()+deepSleepNightTime.get();
if (lastPumpRunning == -1 || !hasWater)
{
if (getSolarVoltage() < SOLAR_CHARGE_MIN_VOLTAGE)
{
gotoMode2AfterThisTimestamp = getCurrentTime() + deepSleepNightTime.get();
Serial.println("No pumps to activate and low light, deepSleepNight");
espDeepSleepFor(deepSleepNightTime.get());
rtcDeepSleepTime = deepSleepNightTime.get();
}else {
gotoMode2AfterThisTimestamp = getCurrentTime()+deepSleepTime.get();
}
else
{
gotoMode2AfterThisTimestamp = getCurrentTime() + deepSleepTime.get();
Serial.println("No pumps to activate, deepSleep");
espDeepSleepFor(deepSleepTime.get());
rtcDeepSleepTime = deepSleepTime.get();
}
}else {
}
else
{
gotoMode2AfterThisTimestamp = 0;
Serial.println("Running pump, watering deepsleep");
espDeepSleepFor(wateringDeepSleep.get(), true);
}
}
long getMoistureTrigger(int plantId){
if(plantId == 0){
long getMoistureTrigger(int plantId)
{
if (plantId == 0)
{
return rtcMoistureTrigger0;
}
if(plantId == 1){
if (plantId == 1)
{
return rtcMoistureTrigger1;
}
if(plantId == 2){
if (plantId == 2)
{
return rtcMoistureTrigger2;
}
if(plantId == 3){
if (plantId == 3)
{
return rtcMoistureTrigger3;
}
if(plantId == 4){
if (plantId == 4)
{
return rtcMoistureTrigger4;
}
if(plantId == 5){
if (plantId == 5)
{
return rtcMoistureTrigger5;
}
if(plantId == 6){
if (plantId == 6)
{
return rtcMoistureTrigger6;
}
return -1;
}
void setLastActivationForPump(int plantId, long value){
if(plantId == 0){
void setLastActivationForPump(int plantId, long value)
{
if (plantId == 0)
{
rtcLastActive0 = value;
}
if(plantId == 1){
if (plantId == 1)
{
rtcLastActive1 = value;
}
if(plantId == 2){
if (plantId == 2)
{
rtcLastActive2 = value;
}
if(plantId == 3){
if (plantId == 3)
{
rtcLastActive3 = value;
}
if(plantId == 4){
if (plantId == 4)
{
rtcLastActive4 = value;
}
if(plantId == 5){
if (plantId == 5)
{
rtcLastActive5 = value;
}
if(plantId == 6){
if (plantId == 6)
{
rtcLastActive6 = value;
}
}
long getLastActivationForPump(int plantId){
if(plantId == 0){
long getLastActivationForPump(int plantId)
{
if (plantId == 0)
{
return rtcLastActive0;
}
if(plantId == 1){
if (plantId == 1)
{
return rtcLastActive1;
}
if(plantId == 2){
if (plantId == 2)
{
return rtcLastActive2;
}
if(plantId == 3){
if (plantId == 3)
{
return rtcLastActive3;
}
if(plantId == 4){
if (plantId == 4)
{
return rtcLastActive4;
}
if(plantId == 5){
if (plantId == 5)
{
return rtcLastActive5;
}
if(plantId == 6){
if (plantId == 6)
{
return rtcLastActive6;
}
return -1;
@ -341,7 +397,8 @@ long getLastActivationForPump(int plantId){
* @brief Sensors, that are connected to GPIOs, mandatory for WIFI.
* These sensors (ADC2) can only be read when no Wifi is used.
*/
void readSensors() {
void readSensors()
{
Serial << "Read Sensors" << endl;
readSystemSensors();
@ -352,8 +409,10 @@ void readSensors() {
delay(100);
/* wait before reading something */
for (int readCnt=0;readCnt < AMOUNT_SENOR_QUERYS; readCnt++) {
for(int i=0; i < MAX_PLANTS; i++) {
for (int readCnt = 0; readCnt < AMOUNT_SENOR_QUERYS; readCnt++)
{
for (int i = 0; i < MAX_PLANTS; i++)
{
mPlants[i].addSenseValue();
}
}
@ -363,21 +422,21 @@ void readSensors() {
Serial << "DS18B20" << String(dallas.readDevices()) << endl;
delay(200);
/* Required to read the temperature once */
float temp[2] = {TEMP_MAX_VALUE, TEMP_MAX_VALUE};
float* pFloat = temp;
float *pFloat = temp;
int sensors = dallas.readAllTemperatures(pFloat, 2);
if (sensors > 0) {
if (sensors > 0)
{
Serial << "t1: " << String(temp[0]) << endl;
temp1.add(temp[0]);
}
if (sensors > 1) {
if (sensors > 1)
{
Serial << "t2: " << String(temp[1]) << endl;
temp2.add(temp[1]);
}
/* Use the Ultrasonic sensor to measure waterLevel */
digitalWrite(SENSOR_SR04_TRIG, LOW);
@ -386,89 +445,100 @@ void readSensors() {
delayMicroseconds(10);
digitalWrite(SENSOR_SR04_TRIG, LOW);
float duration = pulseIn(SENSOR_SR04_ECHO, HIGH);
waterRawSensor.add((duration*.343)/2);
waterRawSensor.add((duration * .343) / 2);
/* deactivate the sensors */
digitalWrite(OUTPUT_SENSOR, LOW);
}
//Homie.getMqttClient().disconnect();
void onHomieEvent(const HomieEvent& event) {
switch(event.type) {
case HomieEventType::SENDING_STATISTICS:
Homie.getLogger() << "My statistics" << endl;
break;
case HomieEventType::MQTT_READY:
Serial.printf("NTP Setup with server %s\r\n", ntpServer.get());
configTime(0, 0, ntpServer.get());
//wait for rtc sync?
rtcDeepSleepTime = deepSleepTime.get();
Serial << "Setup plants" << endl;
for(int i=0; i < MAX_PLANTS; i++) {
mPlants[i].postMQTTconnection();
}
void onHomieEvent(const HomieEvent &event)
{
switch (event.type)
{
case HomieEventType::SENDING_STATISTICS:
Homie.getLogger() << "My statistics" << endl;
break;
case HomieEventType::MQTT_READY:
Serial.printf("NTP Setup with server %s\r\n", ntpServer.get());
configTime(0, 0, ntpServer.get());
//wait for rtc sync?
rtcDeepSleepTime = deepSleepTime.get();
Serial << "Setup plants" << endl;
for (int i = 0; i < MAX_PLANTS; i++)
{
mPlants[i].postMQTTconnection();
}
mode2MQTT();
break;
case HomieEventType::READY_TO_SLEEP:
Homie.getLogger() << "rtsleep" << endl;
esp_deep_sleep_start();
break;
case HomieEventType::OTA_STARTED:
Homie.getLogger() << "OTA started" << endl;
digitalWrite(OUTPUT_SENSOR, HIGH);
digitalWrite(OUTPUT_PUMP, HIGH);
gpio_hold_dis(GPIO_NUM_13); //pump pwr
gpio_deep_sleep_hold_dis();
for (int i=0; i < MAX_PLANTS; i++) {
mPlants[i].deactivatePump();
}
mode3Active=true;
break;
case HomieEventType::OTA_SUCCESSFUL:
mode2MQTT();
break;
case HomieEventType::READY_TO_SLEEP:
Homie.getLogger() << "rtsleep" << endl;
esp_deep_sleep_start();
break;
case HomieEventType::OTA_STARTED:
Homie.getLogger() << "OTA started" << endl;
digitalWrite(OUTPUT_SENSOR, HIGH);
digitalWrite(OUTPUT_PUMP, HIGH);
gpio_hold_dis(GPIO_NUM_13); //pump pwr
gpio_deep_sleep_hold_dis();
for (int i = 0; i < MAX_PLANTS; i++)
{
mPlants[i].deactivatePump();
}
mode3Active = true;
break;
case HomieEventType::OTA_SUCCESSFUL:
Homie.getLogger() << "OTA successfull" << endl;
digitalWrite(OUTPUT_SENSOR, LOW);
digitalWrite(OUTPUT_PUMP, LOW);
ESP.restart();
break;
default:
break;
digitalWrite(OUTPUT_SENSOR, LOW);
digitalWrite(OUTPUT_PUMP, LOW);
ESP.restart();
break;
default:
break;
}
}
int determineNextPump(){
int determineNextPump()
{
float solarValue = getSolarVoltage();
bool isLowLight =(solarValue > SOLAR_CHARGE_MIN_VOLTAGE || solarValue < SOLAR_CHARGE_MAX_VOLTAGE);
bool isLowLight = (solarValue > SOLAR_CHARGE_MIN_VOLTAGE || solarValue < SOLAR_CHARGE_MAX_VOLTAGE);
//FIXME instead of for, use sorted by last activation index to ensure equal runtime?
int pumpToUse = -1;
for(int i=0; i < MAX_PLANTS; i++) {
for (int i = 0; i < MAX_PLANTS; i++)
{
Plant plant = mPlants[i];
long lastActivation = getLastActivationForPump(i);
long sinceLastActivation = getCurrentTime()-lastActivation;
long sinceLastActivation = getCurrentTime() - lastActivation;
//this pump is in cooldown skip it and disable low power mode trigger for it
if(plant.isInCooldown(sinceLastActivation) ){
Serial.printf("%d Skipping due to cooldown\r\n", i);
if (plant.isInCooldown(sinceLastActivation))
{
Serial.printf("%d Skipping due to cooldown %ld \r\n", i, sinceLastActivation);
setMoistureTrigger(i, DEACTIVATED_PLANT);
continue;
}
//skip as it is not low light
if(!isLowLight && plant.isAllowedOnlyAtLowLight()){
if (!isLowLight && plant.isAllowedOnlyAtLowLight())
{
Serial.printf("%d No pump required: due to light\r\n", i);
continue;
}
if(plant.isPumpRequired()){
if (plant.isPumpRequired())
{
Serial.printf("%d Requested pumping\r\n", i);
pumpToUse = i;
}
if(plant.isPumpTriggerActive()){
else if (plant.isPumpTriggerActive())
{
Serial.printf("%d No pump required: disabled trigger %f / %ld\r\n", i, plant.getCurrentMoisture(), plant.getSettingsMoisture());
}else {
}
else
{
Serial.printf("%d No pump required: disabled trigger\r\n", i);
}
}
return pumpToUse;
}
@ -481,22 +551,28 @@ int determineNextPump(){
* @return true when the command was parsed and executed succuessfully
* @return false on errors when parsing the request
*/
bool aliveHandler(const HomieRange& range, const String& value) {
if (range.isRange) return false; // only one controller is present
if (value.equals("ON") || value.equals("On") || value.equals("1")) {
mode3Active=true;
} else {
mode3Active=false;
bool aliveHandler(const HomieRange &range, const String &value)
{
if (range.isRange)
return false; // only one controller is present
if (value.equals("ON") || value.equals("On") || value.equals("1"))
{
mode3Active = true;
}
else
{
mode3Active = false;
}
return true;
}
void homieLoop(){
void homieLoop()
{
}
void systemInit(){
void systemInit()
{
WiFi.mode(WIFI_STA);
Homie_setFirmware("PlantControl", FIRMWARE_VERSION);
@ -509,10 +585,10 @@ void systemInit(){
wateringDeepSleep.setDefaultValue(5);
ntpServer.setDefaultValue("pool.ntp.org");
/* waterLevelMax 1000 */ /* 100cm in mm */
waterLevelMin.setDefaultValue(50); /* 5cm in mm */
waterLevelWarn.setDefaultValue(500); /* 50cm in mm */
waterLevelVol.setDefaultValue(5000); /* 5l in ml */
/* waterLevelMax 1000 */ /* 100cm in mm */
waterLevelMin.setDefaultValue(50); /* 5cm in mm */
waterLevelWarn.setDefaultValue(500); /* 50cm in mm */
waterLevelVol.setDefaultValue(5000); /* 5l in ml */
Homie.setLoopFunction(homieLoop);
Homie.onEvent(onHomieEvent);
@ -520,63 +596,70 @@ void systemInit(){
Homie.setup();
mConfigured = Homie.isConfigured();
if (mConfigured) {
for(int i=0; i < MAX_PLANTS; i++) {
if (mConfigured)
{
for (int i = 0; i < MAX_PLANTS; i++)
{
mPlants[i].advertise();
}
sensorTemp.advertise("control")
.setName("Temperature")
.setDatatype("number")
.setUnit("°C");
.setName("Temperature")
.setDatatype("number")
.setUnit("°C");
sensorTemp.advertise("temp")
.setName("Temperature")
.setDatatype("number")
.setUnit("°C");
.setName("Temperature")
.setDatatype("number")
.setUnit("°C");
sensorLipo.advertise("percent")
.setName("Percent")
.setDatatype("number")
.setUnit("%");
.setName("Percent")
.setDatatype("number")
.setUnit("%");
sensorLipo.advertise("volt")
.setName("Volt")
.setDatatype("number")
.setUnit("V");
.setName("Volt")
.setDatatype("number")
.setUnit("V");
sensorSolar.advertise("percent")
.setName("Percent")
.setDatatype("number")
.setUnit("%");
.setName("Percent")
.setDatatype("number")
.setUnit("%");
sensorSolar.advertise("volt")
.setName("Volt")
.setDatatype("number")
.setUnit("V");
.setName("Volt")
.setDatatype("number")
.setUnit("V");
sensorWater.advertise("remaining").setDatatype("number").setUnit("%");
}
stayAlive.advertise("alive").setName("Alive").setDatatype("number").settable(aliveHandler);
}
bool mode1(){
bool mode1()
{
Serial.println("==== Mode 1 ====");
Serial << getCurrentTime() << " curtime" << endl;
readSensors();
//queue sensor values for
if (rtcDeepSleepTime == 0){
if (rtcDeepSleepTime == 0)
{
Serial.println("1 missing rtc value, going to mode2");
return true;
}
for(int i = 0; i < MAX_PLANTS; i++){
long trigger =getMoistureTrigger(i);
if (trigger == 0) {
for (int i = 0; i < MAX_PLANTS; i++)
{
long trigger = getMoistureTrigger(i);
if (trigger == 0)
{
Serial << "Missing rtc trigger " << i << endl;
return true;
}
if(trigger == DEACTIVATED_PLANT){
if (trigger == DEACTIVATED_PLANT)
{
continue;
}
if(mPlants[i].getSensorValue() <= trigger){
if (mPlants[i].getSensorValue() <= trigger)
{
Serial << "plant dry starting mode 2" << i << endl;
return true;
}
@ -585,26 +668,32 @@ bool mode1(){
//check how long it was already in mode1 if to long goto mode2
long cTime = getCurrentTime();
if(cTime < 100000){
if (cTime < 100000)
{
Serial.println("Starting mode 2 due to missing ntp");
//missing ntp time boot to mode3
return true;
}
if(gotoMode2AfterThisTimestamp < cTime){
if (gotoMode2AfterThisTimestamp < cTime)
{
Serial.println("Starting mode 2 after specified mode1 time");
return true;
} else {
}
else
{
Serial << "Mode2 Timer " << gotoMode2AfterThisTimestamp << " curtime " << cTime << endl;
}
return false;
}
void mode2(){
void mode2()
{
Serial.println("==== Mode 2 ====");
systemInit();
/* Jump into Mode 3, if not configured */
if (!mConfigured) {
if (!mConfigured)
{
Serial.println("==== Mode 3 ====");
mode3Active = true;
}
@ -614,12 +703,15 @@ void mode2(){
* @brief Startup function
* Is called once, the controller is started
*/
void setup() {
void setup()
{
Serial.begin(115200);
Serial.setTimeout(1000); // Set timeout of 1 second
Serial << endl << endl;
Serial << endl
<< endl;
/* Intialize Plant */
for(int i=0; i < MAX_PLANTS; i++) {
for (int i = 0; i < MAX_PLANTS; i++)
{
mPlants[i].init();
}
@ -635,7 +727,8 @@ void setup() {
/* Disable Wifi and bluetooth */
WiFi.mode(WIFI_OFF);
if (HomieInternals::MAX_CONFIG_SETTING_SIZE < MAX_CONFIG_SETTING_ITEMS) {
if (HomieInternals::MAX_CONFIG_SETTING_SIZE < MAX_CONFIG_SETTING_ITEMS)
{
//increase the config settings to 50 and the json to 3000
Serial << "Limits.hpp" << endl;
}
@ -644,19 +737,23 @@ void setup() {
//Panik mode, the Lipo is empty, sleep a long long time:
if ((getBatteryVoltage() < MINIMUM_LIPO_VOLT) &&
(getBatteryVoltage() > NO_LIPO_VOLT)) {
(getBatteryVoltage() > NO_LIPO_VOLT))
{
Serial << PANIK_MODE_DEEPSLEEP << " s lipo " << getBatteryVoltage() << "V" << endl;
esp_sleep_enable_timer_wakeup(PANIK_MODE_DEEPSLEEP_US);
esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_PERIPH, ESP_PD_OPTION_OFF);
esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_FAST_MEM, ESP_PD_OPTION_OFF);
esp_sleep_pd_config(ESP_PD_DOMAIN_XTAL,ESP_PD_OPTION_ON);
esp_sleep_pd_config(ESP_PD_DOMAIN_XTAL, ESP_PD_OPTION_ON);
esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_SLOW_MEM, ESP_PD_OPTION_OFF);
esp_deep_sleep_start();
}
if(mode1()){
if (mode1())
{
mode2();
} else {
}
else
{
Serial.println("nop");
espDeepSleepFor(rtcDeepSleepTime);
}
@ -667,26 +764,33 @@ void setup() {
* Executs the Homie base functionallity or triggers sleeping, if requested.
*/
long nextBlink = 0;
void loop() {
if (!mDeepsleep || mode3Active) {
void loop()
{
if (!mDeepsleep || mode3Active)
{
Homie.loop();
} else {
}
else
{
Serial << "Bye" << endl;
Serial.flush();
esp_deep_sleep_start();
}
if(millis() > 30000 && !mode3Active){
Serial << (millis()/ 1000) << "not terminated watchdog putting to sleep" << endl;
if (millis() > 30000 && !mode3Active)
{
Serial << (millis() / 1000) << "not terminated watchdog putting to sleep" << endl;
Serial.flush();
espDeepSleepFor(rtcDeepSleepTime);
}
/* Toggel Senor LED to visualize mode 3 */
if(mode3Active){
if (nextBlink < millis()) {
if (mode3Active)
{
if (nextBlink < millis())
{
nextBlink = millis() + 500;
digitalWrite(OUTPUT_SENSOR, ! digitalRead(OUTPUT_SENSOR));
digitalWrite(OUTPUT_SENSOR, !digitalRead(OUTPUT_SENSOR));
}
}
}