more stack for json, more json for mqtt

This commit is contained in:
Empire Phoenix 2024-06-10 23:40:50 +02:00
parent b57eb2513c
commit 4d92e0c2a6
3 changed files with 178 additions and 158 deletions

View File

@ -1,5 +1,5 @@
# Rust often needs a bit of an extra main task stack size compared to C (the default is 3K)
CONFIG_ESP_MAIN_TASK_STACK_SIZE=25000
CONFIG_ESP_MAIN_TASK_STACK_SIZE=50000
# Use this to set FreeRTOS kernel tick frequency to 1000 Hz (100 Hz by default).
# This allows to use 1 ms granuality for thread sleeps (10 ms by default).

View File

@ -46,7 +46,7 @@ mod webserver {
pub mod webserver;
}
#[derive(Serialize, Deserialize, Copy, Clone, Debug, PartialEq)]
#[derive(Serialize, Deserialize, Debug, PartialEq)]
enum OnlineMode {
Offline,
Wifi,
@ -54,7 +54,7 @@ enum OnlineMode {
Online,
}
#[derive(Serialize, Deserialize, Copy, Clone, Debug, PartialEq)]
#[derive(Serialize, Deserialize, Debug, PartialEq)]
enum WaitType {
InitialConfig,
FlashError,
@ -62,7 +62,7 @@ enum WaitType {
StayAlive,
}
#[derive(Serialize, Deserialize, Copy, Clone, Debug, PartialEq, Default)]
#[derive(Serialize, Deserialize, Debug, PartialEq, Default)]
struct LightState {
active: bool,
out_of_work_hour: bool,
@ -70,7 +70,7 @@ struct LightState {
is_day: bool,
}
#[derive(Clone, Copy, Debug, PartialEq, Default)]
#[derive(Debug, PartialEq, Default)]
struct PlantState {
a: Option<u8>,
b: Option<u8>,
@ -91,14 +91,14 @@ struct PlantState {
next_pump: Option<DateTime<Tz>>,
}
#[derive(Serialize, Deserialize, Copy, Clone, Debug, PartialEq)]
#[derive(Serialize, Deserialize, Debug, PartialEq)]
enum SensorError {
Unknown,
ShortCircuit { hz: f32, max: f32 },
OpenCircuit { hz: f32, min: f32 },
}
#[derive(Copy, Clone, Debug, PartialEq, Default)]
#[derive(Debug, PartialEq, Default)]
struct TankState {
enough_water: bool,
warn_level: bool,
@ -113,7 +113,7 @@ struct TankStateMQTT {
left_ml: u32,
sensor_error: bool,
raw: u16,
water_frozen: String
water_frozen: String,
}
#[derive(Serialize)]
@ -365,13 +365,13 @@ fn safe_main() -> anyhow::Result<()> {
}
let tank_state = determine_tank_state(&mut board, &config);
let mut tank_state_mqtt = TankStateMQTT{
enough_water : tank_state.enough_water,
left_ml : tank_state.left_ml,
warn_level : tank_state.warn_level,
let mut tank_state_mqtt = TankStateMQTT {
enough_water: tank_state.enough_water,
left_ml: tank_state.left_ml,
warn_level: tank_state.warn_level,
sensor_error: tank_state.sensor_error,
raw: tank_state.raw,
water_frozen: "".to_owned()
water_frozen: "".to_owned(),
};
let mut water_frozen = false;
@ -396,9 +396,7 @@ fn safe_main() -> anyhow::Result<()> {
}
tank_state_mqtt.water_frozen = water_frozen.to_string();
}
None => {
tank_state_mqtt.water_frozen = "tank sensor error".to_owned()
}
None => tank_state_mqtt.water_frozen = "tank sensor error".to_owned(),
}
if online_mode == OnlineMode::Online {
@ -412,9 +410,9 @@ fn safe_main() -> anyhow::Result<()> {
};
}
let mut plantstate = [PlantState {
let mut plantstate: [PlantState; PLANT_COUNT] = core::array::from_fn(|_| PlantState {
..Default::default()
}; PLANT_COUNT];
});
let plant_to_pump = determine_next_plant(
&mut plantstate,
europe_time,
@ -426,12 +424,7 @@ fn safe_main() -> anyhow::Result<()> {
let stay_alive = STAY_ALIVE.load(std::sync::atomic::Ordering::Relaxed);
println!("Check stay alive, current state is {}", stay_alive);
if stay_alive {
drop(board);
let reboot_now = Arc::new(AtomicBool::new(false));
let _webserver = httpd(reboot_now.clone());
wait_infinity(WaitType::StayAlive, reboot_now.clone());
}
let mut did_pump = false;
match plant_to_pump {
Some(plant) => {
@ -461,6 +454,7 @@ fn safe_main() -> anyhow::Result<()> {
"Trying to pump for {}s with pump {} now",
plant_config.pump_time_s, plant
);
if !stay_alive {
did_pump = true;
board.any_pump(true)?;
board.store_last_pump_time(plant, cur);
@ -469,7 +463,7 @@ fn safe_main() -> anyhow::Result<()> {
state.active = true;
for _ in 0..plant_config.pump_time_s {
unsafe { vTaskDelay(CONFIG_FREERTOS_HZ) };
let p_live_topic = format!("/plant{}/p live", plant + 1);
let p_live_topic = format!("/plant{} p live", plant + 1);
if plant_config.sensor_p {
let moist = map_range_moisture(
board.measure_moisture_hz(plant, plant_hal::Sensor::PUMP)? as f32,
@ -478,17 +472,20 @@ fn safe_main() -> anyhow::Result<()> {
let _ = board.mqtt_publish(
&config,
&p_live_topic,
option_to_string(moist.ok()).as_bytes(),
option_to_string(&moist.ok()).as_bytes(),
);
}
} else {
if online_mode == OnlineMode::Online {
let _ = board.mqtt_publish(&config, &p_live_topic, "disabled".as_bytes());
let _ =
board.mqtt_publish(&config, &p_live_topic, "disabled".as_bytes());
}
}
}
board.pump(plant, false)?;
}
if plant_config.sensor_p {
match map_range_moisture(
board.measure_moisture_hz(plant, plant_hal::Sensor::PUMP)? as f32,
@ -522,7 +519,7 @@ fn safe_main() -> anyhow::Result<()> {
let is_day = board.is_day();
light_state.is_day = is_day;
light_state.out_of_work_hour = !in_time_range(
europe_time,
&europe_time,
config.night_lamp_hour_start,
config.night_lamp_hour_end,
);
@ -604,16 +601,14 @@ fn safe_main() -> anyhow::Result<()> {
//is deep sleep
mark_app_valid();
unsafe { esp_deep_sleep(1000 * 1000 * 60 * deep_sleep_duration_minutes as u64) };
}
fn to_string<T: Display>(value: Result<T>) -> String {
return match value {
Ok(v) => v.to_string(),
Err(err) => {
format!("{:?}", err)
if stay_alive {
drop(board);
let reboot_now = Arc::new(AtomicBool::new(false));
let _webserver = httpd(reboot_now.clone());
wait_infinity(WaitType::StayAlive, reboot_now.clone());
}
};
unsafe { esp_deep_sleep(1000 * 1000 * 60 * deep_sleep_duration_minutes as u64) };
}
fn publish_battery_state(
@ -621,13 +616,13 @@ fn publish_battery_state(
config: &Config,
) {
let bat = BatteryState {
voltage_milli_volt: &to_string(board.voltage_milli_volt()),
current_milli_ampere: &to_string(board.average_current_milli_ampere()),
cycle_count: &to_string(board.cycle_count()),
design_milli_ampere: &to_string(board.design_milli_ampere_hour()),
remaining_milli_ampere: &to_string(board.remaining_milli_ampere_hour()),
state_of_charge: &to_string(board.state_charge_percent()),
state_of_health: &to_string(board.state_health_percent()),
voltage_milli_volt: &to_string(&board.voltage_milli_volt()),
current_milli_ampere: &to_string(&board.average_current_milli_ampere()),
cycle_count: &to_string(&board.cycle_count()),
design_milli_ampere: &to_string(&board.design_milli_ampere_hour()),
remaining_milli_ampere: &to_string(&board.remaining_milli_ampere_hour()),
state_of_charge: &to_string(&board.state_charge_percent()),
state_of_health: &to_string(&board.state_health_percent()),
};
match serde_json::to_string(&bat) {
Ok(state) => {
@ -701,54 +696,6 @@ fn determine_tank_state(
};
}
fn map_range(from_range: (f32, f32), s: f32) -> anyhow::Result<f32> {
if s < from_range.0 {
anyhow::bail!(
"Value out of range, min {} but current is {}",
from_range.0,
s
);
}
if s > from_range.1 {
anyhow::bail!(
"Value out of range, max {} but current is {}",
from_range.1,
s
);
}
return Ok(TO.0 + (s - from_range.0) * (TO.1 - TO.0) / (from_range.1 - from_range.0));
}
fn map_range_moisture(s: f32) -> Result<u8, SensorError> {
if s < FROM.0 {
return Err(SensorError::OpenCircuit { hz: s, min: FROM.0 });
}
if s > FROM.1 {
return Err(SensorError::ShortCircuit { hz: s, max: FROM.1 });
}
let tmp = TO.0 + (s - FROM.0) * (TO.1 - TO.0) / (FROM.1 - FROM.0);
return Ok(tmp as u8);
}
fn in_time_range(cur: DateTime<Tz>, start: u8, end: u8) -> bool {
let curhour = cur.hour() as u8;
//eg 10-14
if start < end {
return curhour > start && curhour < end;
} else {
//eg 20-05
return curhour > start || curhour < end;
}
}
fn option_to_string(value: Option<u8>) -> String {
match value {
Some(v) => v.to_string(),
None => "Error".to_owned(),
}
}
fn determine_state_target_moisture_for_plant(
board: &mut std::sync::MutexGuard<'_, PlantCtrlBoard<'_>>,
plant: usize,
@ -761,7 +708,20 @@ fn determine_state_target_moisture_for_plant(
if plant_config.mode == Mode::OFF {
return;
}
match board.measure_moisture_hz(plant, plant_hal::Sensor::A) {
Ok(a) => {
let mapped = map_range_moisture(a as f32);
match mapped {
Ok(result) => state.a = Some(result),
Err(err) => {
state.sensor_error_a = Some(err);
}
}
}
Err(_) => {
state.sensor_error_a = Some(SensorError::Unknown);
}
}
if plant_config.sensor_b {
match board.measure_moisture_hz(plant, plant_hal::Sensor::B) {
Ok(b) => {
@ -813,7 +773,7 @@ fn determine_state_target_moisture_for_plant(
}
if !in_time_range(
cur,
&cur,
plant_config.pump_hour_start,
plant_config.pump_hour_end,
) {
@ -883,7 +843,7 @@ fn determine_state_timer_and_deadzone_for_plant(
state.cooldown = true;
}
if !in_time_range(
cur,
&cur,
plant_config.pump_hour_start,
plant_config.pump_hour_end,
) {
@ -976,13 +936,17 @@ fn update_plant_state(
let mode = format!("{:?}", plant_config.mode);
let plant_dto = PlantStateMQTT {
p_start: &sensor_to_string(state.p, state.sensor_error_p, plant_config.sensor_p),
p_end: &sensor_to_string(state.after_p, state.sensor_error_p, plant_config.sensor_p),
a: &sensor_to_string(state.a, state.sensor_error_a, true),
b: &sensor_to_string(state.b, state.sensor_error_b, plant_config.sensor_b),
p_start: &sensor_to_string(&state.p, &state.sensor_error_p, plant_config.sensor_p),
p_end: &sensor_to_string(&state.after_p, &state.sensor_error_p, plant_config.sensor_p),
a: &sensor_to_string(
&state.a,
&state.sensor_error_a,
plant_config.mode != Mode::OFF,
),
b: &sensor_to_string(&state.b, &state.sensor_error_b, plant_config.sensor_b),
active: state.active,
mode: &mode,
last_pump: &&time_to_string_utc(board.last_pump_time(plant)),
last_pump: &time_to_string_utc(board.last_pump_time(plant)),
next_pump: &time_to_string(state.next_pump),
consecutive_pump_count: state.consecutive_pump_count,
cooldown: state.cooldown,
@ -996,6 +960,8 @@ fn update_plant_state(
Ok(state) => {
let plant_topic = format!("/plant{}", plant + 1);
let _ = board.mqtt_publish(&config, &plant_topic, state.as_bytes());
//reduce speed as else messages will be dropped
Delay::new_default().delay_ms(200);
}
Err(err) => {
println!("Error publishing lightstate {}", err);
@ -1004,39 +970,6 @@ fn update_plant_state(
}
}
fn time_to_string_utc(value_option: Option<DateTime<Utc>>) -> String {
let converted = value_option.and_then(|utc| Some(utc.with_timezone(&Berlin)));
return time_to_string(converted);
}
fn time_to_string(value_option: Option<DateTime<Tz>>) -> String {
match value_option {
Some(value) => {
let europe_time = value.with_timezone(&Berlin);
if europe_time.year() > 2023 {
return europe_time.to_rfc3339();
} else {
return "smtp error".to_owned();
}
}
None => return "N/A".to_owned(),
};
}
fn sensor_to_string(value: Option<u8>, error: Option<SensorError>, enabled: bool) -> String {
if enabled {
match error {
Some(error) => return format!("{:?}", error),
None => match value {
Some(v) => return v.to_string(),
None => return "Error".to_owned(),
},
}
} else {
return "disabled".to_owned();
};
}
fn wait_infinity(wait_type: WaitType, reboot_now: Arc<AtomicBool>) -> ! {
let delay = match wait_type {
WaitType::InitialConfig => 250_u32,
@ -1091,7 +1024,94 @@ fn main() {
}
}
}
//error codes
//error_reading_config_after_upgrade
//error_no_config_after_upgrade
//error_tank_sensor_fault
fn time_to_string_utc(value_option: Option<DateTime<Utc>>) -> String {
let converted = value_option.and_then(|utc| Some(utc.with_timezone(&Berlin)));
return time_to_string(converted);
}
fn time_to_string(value_option: Option<DateTime<Tz>>) -> String {
match value_option {
Some(value) => {
let europe_time = value.with_timezone(&Berlin);
if europe_time.year() > 2023 {
return europe_time.to_rfc3339();
} else {
//initial value of 0 in rtc memory
return "N/A".to_owned();
}
}
None => return "N/A".to_owned(),
};
}
fn sensor_to_string(value: &Option<u8>, error: &Option<SensorError>, enabled: bool) -> String {
if enabled {
match error {
Some(error) => return format!("{:?}", error),
None => match value {
Some(v) => return v.to_string(),
None => return "Error".to_owned(),
},
}
} else {
return "disabled".to_owned();
};
}
fn to_string<T: Display>(value: &Result<T>) -> String {
return match value {
Ok(v) => v.to_string(),
Err(err) => {
format!("{:?}", err)
}
};
}
fn map_range(from_range: (f32, f32), s: f32) -> anyhow::Result<f32> {
if s < from_range.0 {
anyhow::bail!(
"Value out of range, min {} but current is {}",
from_range.0,
s
);
}
if s > from_range.1 {
anyhow::bail!(
"Value out of range, max {} but current is {}",
from_range.1,
s
);
}
return Ok(TO.0 + (s - from_range.0) * (TO.1 - TO.0) / (from_range.1 - from_range.0));
}
fn map_range_moisture(s: f32) -> Result<u8, SensorError> {
if s < FROM.0 {
return Err(SensorError::OpenCircuit { hz: s, min: FROM.0 });
}
if s > FROM.1 {
return Err(SensorError::ShortCircuit { hz: s, max: FROM.1 });
}
let tmp = TO.0 + (s - FROM.0) * (TO.1 - TO.0) / (FROM.1 - FROM.0);
return Ok(tmp as u8);
}
fn in_time_range(cur: &DateTime<Tz>, start: u8, end: u8) -> bool {
let curhour = cur.hour() as u8;
//eg 10-14
if start < end {
return curhour > start && curhour < end;
} else {
//eg 20-05
return curhour > start || curhour < end;
}
}
fn option_to_string(value: &Option<u8>) -> String {
match value {
Some(v) => v.to_string(),
None => "Error".to_owned(),
}
}

View File

@ -17,7 +17,7 @@ use esp_idf_svc::mqtt::client::{EspMqttClient, LwtConfiguration, MqttClientConfi
use esp_idf_svc::nvs::EspDefaultNvsPartition;
use esp_idf_svc::wifi::config::{ScanConfig, ScanType};
use esp_idf_svc::wifi::EspWifi;
use measurements::{Frequency, Temperature};
use measurements::Temperature;
use plant_ctrl2::sipo::ShiftRegister40;
use anyhow::anyhow;