7 Commits

7 changed files with 452 additions and 108 deletions

163
README.md
View File

@@ -1,88 +1,135 @@
# DD3-LoRa-Bridge-MultiSender
Unified firmware for LilyGO T3 v1.6.1 (ESP32 + SX1276 + SSD1306) running as either:
- `Sender`: reads meter values and sends binary batches over LoRa.
- `Receiver`: accepts batches, ACKs with optional time, publishes to MQTT/web.
Firmware for LilyGO T3 v1.6.1 (`ESP32 + SX1276 + SSD1306`) that runs as either:
- `Sender` (PIN `GPIO14` HIGH): reads one IEC 62056-21 meter, batches samples, sends over LoRa.
- `Receiver` (PIN `GPIO14` LOW): receives/ACKs batches, publishes MQTT, serves web UI, logs to SD.
## Protocol (minimal)
## Current Architecture
Frame format:
- Single codebase, role selected at boot via `detect_role()` (`include/config.h`, `src/config.cpp`).
- LoRa link uses explicit CRC16 frame protection in firmware (`src/lora_transport.cpp`).
- Sender batches up to `30` samples and retries on missing ACK (`BATCH_MAX_RETRIES=2`, retry policy `Keep`).
- Sender meter parsing is decoupled from LoRa ACK waits using a dedicated FreeRTOS reader task + queue (`src/main.cpp`).
- Receiver uses STA mode when config is valid, otherwise AP fallback with web config.
- No debug auto-reboot timer is active in normal firmware loops.
`[msg_kind:1][dev_id_short:2][payload...][crc16:2]`
## LoRa Frame Protocol (Current)
On-air frame format:
`[msg_kind:1][device_short_id:2][payload...][crc16:2]`
`msg_kind`:
- `0`: `BATCH_UP` (Sender -> Receiver)
- `1`: `ACK_DOWN` (Receiver -> Sender)
- `0` = `BatchUp`
- `1` = `AckDown`
Removed from protocol:
- protocol version field
- payload type field
- MeterData JSON/compressed LoRa path
- standalone TimeSync packets
### `BatchUp`
CRC16 validation is still required on every frame.
Transport is chunked (`batch_id`, `chunk_index`, `chunk_count`, `total_len`) and reassembled before payload decode.
## Payloads
Payload codec (`src/payload_codec.cpp`) currently uses:
- `kMagic=0xDDB3`
- `kSchema=2`
- metadata: sender, batch, timestamp, interval, battery, fault counters
- data arrays: `energy_wh[]`, `p1_w[]`, `p2_w[]`, `p3_w[]`
### 1) `BATCH_UP`
- Uses existing binary batch/chunk transport.
- `sample_count == 0` is valid and means `SYNC_REQUEST`.
`n == 0` is valid and used for sync request packets.
### 2) `ACK_DOWN` (7 bytes)
- `flags` (`u8`): bit0 = `time_valid`
- `batch_id` (`u16`, big-endian)
- `epoch_utc` (`u32`, big-endian)
### `AckDown` (7 bytes)
Receiver sets:
- `time_valid=1` only when receiver time is authoritative and sane.
- Otherwise `time_valid=0` and `epoch_utc=0`.
`[flags:1][batch_id_be:2][epoch_utc_be:4]`
## Time bootstrap safety
- `flags bit0`: `time_valid`
- Receiver repeats ACK (`ACK_REPEAT_COUNT=3`, `ACK_REPEAT_DELAY_MS=200`).
- Sender accepts time only if `time_valid=1` and `epoch >= MIN_ACCEPTED_EPOCH_UTC` (`2026-02-01 00:00:00 UTC`).
Sender starts with:
## Time Bootstrap Guardrail
On sender boot:
- `g_time_acquired=false`
- no real sampling/batching
- periodic `SYNC_REQUEST` every `SYNC_REQUEST_INTERVAL_MS` (default `15000ms`)
- no normal sampling/transmit yet
- sync request every `SYNC_REQUEST_INTERVAL_MS` (15s)
Sender only accepts time from `ACK_DOWN` if:
- `time_valid == 1`
- `epoch_utc >= 2026-02-01 00:00:00 UTC` (`MIN_ACCEPTED_EPOCH_UTC = 1769904000`)
Only then:
Only after valid ACK time is received:
- system time is set
- `g_time_acquired=true`
- normal 1 Hz sampling + batch transmit starts
- normal 1 Hz sampling and periodic LoRa batch transmit start
This guarantees no pre-`2026-02-01` epoch reaches MQTT or SD/DB paths.
This blocks pre-threshold timestamps from MQTT/SD paths.
## Receiver behavior
Timezone handling:
- Local time rendering uses `TIMEZONE_TZ` from `include/config.h`.
- Default value is `CET-1CEST,M3.5.0/2,M10.5.0/3` and can be changed at compile time.
On `BATCH_UP`:
1. Decode batch/chunks.
2. Send `ACK_DOWN` immediately.
3. If `sample_count == 0`: treat as `SYNC_REQUEST`, do not publish MQTT/update stats.
4. Else decode and publish samples as normal.
## Sender Meter Path
## Sender/Receiver debug logs (`SERIAL_DEBUG_MODE`)
Implemented in `src/meter_driver.cpp` + sender loop in `src/main.cpp`:
Sender:
- `sync: request tx batch_id=%u`
- `ack: rx ok batch_id=%u time_valid=%u epoch=%lu set=%u`
- `ack: timeout batch_id=%u retry=%u`
- UART: `Serial2`, RX pin `GPIO34` (`PIN_METER_RX`), `9600 7E1`
- ESP32 RX buffer is enlarged to `8192` bytes to survive long LoRa blocking sections.
- Frame detection: starts at `'/'`, ends at `'!'`, timeout protection included (`METER_FRAME_TIMEOUT_MS=20000`).
- Parsing runs in a dedicated sender task and is handed to the main sender loop via queue.
- Parsed OBIS values:
- `1-0:1.8.0` (total energy)
- `1-0:16.7.0` (total power)
- `1-0:36.7.0`, `56.7.0`, `76.7.0` (phase powers)
- `1-0:1.8.0*Wh` is automatically scaled to kWh
Receiver:
- `ack: tx batch_id=%u time_valid=%u epoch=%lu samples=%u`
Sender samples every second and transmits batches every 30 seconds.
## Removed hardware dependency
## Receiver Behavior
DS3231 RTC support was removed:
- no RTC files
- no RTC init/load/set logic
- no `ENABLE_DS3231` flow
For valid `BatchUp` decode:
1. Reassemble chunks and decode payload.
2. Send `AckDown` immediately.
3. Drop duplicate batches per sender (`batch_id` tracking).
4. If `n==0`: treat as sync request only.
5. Else convert samples, log to SD, update web UI, publish MQTT.
## Build
## MQTT Topics and Payloads
State topic:
- `smartmeter/<device_id>/state`
Fault topic (retained):
- `smartmeter/<device_id>/faults`
State JSON fields (`src/json_codec.cpp`):
- `id`, `ts`, `e_kwh`
- `p_w`, `p1_w`, `p2_w`, `p3_w`
- `bat_v`, `bat_pct`
- optional link fields: `rssi`, `snr`
- fault/reject fields: `err_last`, `rx_reject`, `rx_reject_text` (+ non-zero counters)
Home Assistant discovery is enabled (`ENABLE_HA_DISCOVERY=true`) and publishes config topics under:
- `homeassistant/sensor/<device_id>/<key>/config`
## Web UI, Wi-Fi, Storage
- Wi-Fi/MQTT/NTP/web-auth config persists in Preferences (`wifi_manager`).
- AP fallback SSID prefix: `DD3-Bridge-`.
- Default web credentials: `admin/admin`.
- SD logging enabled (`ENABLE_SD_LOGGING=true`).
## Build Environments
From `platformio.ini`:
- `lilygo-t3-v1-6-1`
- `lilygo-t3-v1-6-1-test`
- `lilygo-t3-v1-6-1-868`
- `lilygo-t3-v1-6-1-868-test`
- `lilygo-t3-v1-6-1-payload-test`
- `lilygo-t3-v1-6-1-868-payload-test`
- `lilygo-t3-v1-6-1-prod`
- `lilygo-t3-v1-6-1-868-prod`
Example:
```bash
pio run -e lilygo-t3-v1-6-1
pio run -e lilygo-t3-v1-6-1-test
~/.platformio/penv/bin/pio run -e lilygo-t3-v1-6-1
```
## Test Mode
`ENABLE_TEST_MODE` replaces normal sender/receiver loops with dedicated test loops (`src/test_mode.cpp`).
It sends/receives JSON test frames and publishes to `smartmeter/<device_id>/test`.

View File

@@ -79,6 +79,7 @@ constexpr uint16_t SD_HISTORY_MAX_DAYS = 30;
constexpr uint16_t SD_HISTORY_MIN_RES_MIN = 1;
constexpr uint16_t SD_HISTORY_MAX_BINS = 4000;
constexpr uint16_t SD_HISTORY_TIME_BUDGET_MS = 10;
constexpr const char *TIMEZONE_TZ = "CET-1CEST,M3.5.0/2,M10.5.0/3";
constexpr const char *AP_SSID_PREFIX = "DD3-Bridge-";
constexpr const char *AP_PASSWORD = "changeme123";
constexpr bool WEB_AUTH_REQUIRE_STA = true;

View File

@@ -3,6 +3,8 @@
#include <limits.h>
#include <math.h>
static constexpr size_t STATE_JSON_DOC_CAPACITY = 512;
static float round2(float value) {
if (isnan(value)) {
return value;
@@ -58,7 +60,7 @@ static void set_int_or_null(JsonDocument &doc, const char *key, float value) {
}
bool meterDataToJson(const MeterData &data, String &out_json) {
StaticJsonDocument<256> doc;
StaticJsonDocument<STATE_JSON_DOC_CAPACITY> doc;
doc["id"] = short_id_from_device_id(data.device_id);
doc["ts"] = data.ts_utc;
char buf[16];
@@ -90,5 +92,5 @@ bool meterDataToJson(const MeterData &data, String &out_json) {
out_json = "";
size_t len = serializeJson(doc, out_json);
return len > 0 && len < 256;
return len > 0;
}

View File

@@ -17,6 +17,9 @@
#ifdef ARDUINO_ARCH_ESP32
#include <esp_task_wdt.h>
#include <esp_system.h>
#include <freertos/FreeRTOS.h>
#include <freertos/queue.h>
#include <freertos/task.h>
#endif
static DeviceRole g_role = DeviceRole::Sender;
@@ -26,7 +29,6 @@ static char g_device_id[16] = "";
static SenderStatus g_sender_statuses[NUM_SENDERS];
static bool g_ap_mode = false;
static WifiMqttConfig g_cfg;
static uint32_t g_boot_ms = 0;
static FaultCounters g_sender_faults = {};
static FaultCounters g_receiver_faults = {};
static FaultCounters g_receiver_faults_published = {};
@@ -55,6 +57,10 @@ struct BatchBuffer {
uint16_t batch_id;
bool batch_id_valid;
uint8_t count;
uint16_t attempt_count;
uint16_t valid_count;
uint16_t invalid_count;
FaultType last_error;
MeterData samples[METER_BATCH_MAX_SAMPLES];
};
@@ -96,8 +102,33 @@ static uint32_t g_last_meter_rx_ms = 0;
static uint32_t g_meter_stale_seconds = 0;
static bool g_time_acquired = false;
static uint32_t g_last_sync_request_ms = 0;
static uint32_t g_build_attempts = 0;
static uint32_t g_build_valid = 0;
static uint32_t g_build_invalid = 0;
static constexpr uint32_t METER_SAMPLE_MAX_AGE_MS = 15000;
struct MeterSampleEvent {
MeterData data;
uint32_t rx_ms;
};
#ifdef ARDUINO_ARCH_ESP32
static QueueHandle_t g_meter_sample_queue = nullptr;
static TaskHandle_t g_meter_reader_task = nullptr;
static bool g_meter_reader_task_running = false;
static constexpr UBaseType_t METER_SAMPLE_QUEUE_LEN = 8;
static constexpr uint32_t METER_READER_TASK_STACK_WORDS = 4096;
static constexpr UBaseType_t METER_READER_TASK_PRIORITY = 2;
static constexpr BaseType_t METER_READER_TASK_CORE = 0;
#endif
enum class TxBuildError : uint8_t {
None = 0,
Encode = 1
};
static TxBuildError g_last_tx_build_error = TxBuildError::None;
static void watchdog_kick();
static void finish_inflight_batch();
static void serial_debug_printf(const char *fmt, ...) {
if (!SERIAL_DEBUG_MODE) {
@@ -111,6 +142,117 @@ static void serial_debug_printf(const char *fmt, ...) {
Serial.println(buf);
}
static void set_last_meter_sample(const MeterData &parsed, uint32_t rx_ms) {
g_last_meter_data = parsed;
g_last_meter_valid = true;
g_last_meter_rx_ms = rx_ms;
g_meter_stale_seconds = 0;
}
static bool parse_meter_frame_sample(const char *frame, size_t frame_len, MeterData &parsed) {
parsed = {};
parsed.energy_total_kwh = NAN;
parsed.total_power_w = NAN;
parsed.phase_power_w[0] = NAN;
parsed.phase_power_w[1] = NAN;
parsed.phase_power_w[2] = NAN;
parsed.valid = false;
return meter_parse_frame(frame, frame_len, parsed);
}
#ifdef ARDUINO_ARCH_ESP32
static void meter_queue_push_latest(const MeterSampleEvent &event) {
if (!g_meter_sample_queue) {
return;
}
if (xQueueSend(g_meter_sample_queue, &event, 0) == pdTRUE) {
return;
}
MeterSampleEvent dropped = {};
xQueueReceive(g_meter_sample_queue, &dropped, 0);
if (xQueueSend(g_meter_sample_queue, &event, 0) != pdTRUE && SERIAL_DEBUG_MODE) {
serial_debug_printf("meter: queue push failed");
}
}
static void meter_reader_task_entry(void *arg) {
(void)arg;
for (;;) {
const char *frame = nullptr;
size_t frame_len = 0;
if (!meter_poll_frame(frame, frame_len)) {
vTaskDelay(pdMS_TO_TICKS(5));
continue;
}
MeterData parsed = {};
if (parse_meter_frame_sample(frame, frame_len, parsed)) {
MeterSampleEvent event = {};
event.data = parsed;
event.rx_ms = millis();
meter_queue_push_latest(event);
}
}
}
static bool meter_reader_start() {
if (g_meter_reader_task_running) {
return true;
}
if (!g_meter_sample_queue) {
g_meter_sample_queue = xQueueCreate(METER_SAMPLE_QUEUE_LEN, sizeof(MeterSampleEvent));
if (!g_meter_sample_queue) {
if (SERIAL_DEBUG_MODE) {
serial_debug_printf("meter: queue alloc failed");
}
return false;
}
}
BaseType_t rc = xTaskCreatePinnedToCore(
meter_reader_task_entry,
"meter_reader",
METER_READER_TASK_STACK_WORDS,
nullptr,
METER_READER_TASK_PRIORITY,
&g_meter_reader_task,
METER_READER_TASK_CORE);
if (rc != pdPASS) {
if (SERIAL_DEBUG_MODE) {
serial_debug_printf("meter: task start failed rc=%ld", static_cast<long>(rc));
}
return false;
}
g_meter_reader_task_running = true;
serial_debug_printf("meter: reader task core=%ld queue=%u",
static_cast<long>(METER_READER_TASK_CORE),
static_cast<unsigned>(METER_SAMPLE_QUEUE_LEN));
return true;
}
#endif
static void meter_reader_pump(uint32_t now_ms) {
#ifdef ARDUINO_ARCH_ESP32
if (g_meter_reader_task_running && g_meter_sample_queue) {
MeterSampleEvent event = {};
while (xQueueReceive(g_meter_sample_queue, &event, 0) == pdTRUE) {
set_last_meter_sample(event.data, event.rx_ms);
}
return;
}
#endif
const char *frame = nullptr;
size_t frame_len = 0;
if (!meter_poll_frame(frame, frame_len)) {
return;
}
MeterData parsed = {};
if (parse_meter_frame_sample(frame, frame_len, parsed)) {
set_last_meter_sample(parsed, now_ms);
}
}
static uint16_t g_last_batch_id_rx[NUM_SENDERS] = {};
struct BatchRxState {
@@ -207,6 +349,10 @@ static void batch_queue_enqueue(const MeterData *samples, uint8_t count) {
slot.batch_id = 0;
slot.batch_id_valid = false;
slot.count = count;
slot.attempt_count = static_cast<uint16_t>(g_build_attempts);
slot.valid_count = static_cast<uint16_t>(g_build_valid);
slot.invalid_count = static_cast<uint16_t>(g_build_invalid);
slot.last_error = g_sender_last_error;
for (uint8_t i = 0; i < count; ++i) {
slot.samples[i] = samples[i];
}
@@ -214,6 +360,28 @@ static void batch_queue_enqueue(const MeterData *samples, uint8_t count) {
g_batch_count++;
}
static void reset_build_counters() {
g_build_attempts = 0;
g_build_valid = 0;
g_build_invalid = 0;
}
static bool append_meter_sample(const MeterData &data, bool meter_ok) {
if (!meter_ok) {
g_build_invalid++;
return false;
}
g_last_sample_ts_utc = data.ts_utc;
g_build_samples[g_build_count++] = data;
g_build_valid++;
if (g_build_count >= METER_BATCH_MAX_SAMPLES) {
batch_queue_enqueue(g_build_samples, g_build_count);
g_build_count = 0;
reset_build_counters();
}
return true;
}
static uint32_t last_sample_ts() {
if (g_last_sample_ts_utc == 0) {
uint32_t now_utc = time_get_utc();
@@ -356,6 +524,23 @@ static bool float_to_i16_w(float value, int16_t &out) {
return true;
}
static int16_t float_to_i16_w_clamped(float value, bool &clamped) {
clamped = false;
if (isnan(value)) {
return 0;
}
long rounded = lroundf(value);
if (rounded < INT16_MIN) {
clamped = true;
return INT16_MIN;
}
if (rounded > INT16_MAX) {
clamped = true;
return INT16_MAX;
}
return static_cast<int16_t>(rounded);
}
static uint16_t battery_mv_from_voltage(float value) {
if (isnan(value) || value <= 0.0f) {
return 0;
@@ -482,6 +667,15 @@ static bool prepare_inflight_from_queue() {
batch->batch_id = g_batch_id;
batch->batch_id_valid = true;
}
if (SERIAL_DEBUG_MODE) {
serial_debug_printf("batch: id=%u desired=%u attempts=%u valid=%u invalid=%u err_last=%u",
batch->batch_id,
static_cast<unsigned>(METER_BATCH_MAX_SAMPLES),
static_cast<unsigned>(batch->attempt_count),
static_cast<unsigned>(batch->valid_count),
static_cast<unsigned>(batch->invalid_count),
static_cast<unsigned>(batch->last_error));
}
g_inflight_count = batch->count;
g_inflight_batch_id = batch->batch_id;
for (uint8_t i = 0; i < g_inflight_count; ++i) {
@@ -492,6 +686,7 @@ static bool prepare_inflight_from_queue() {
}
static bool send_inflight_batch(uint32_t ts_for_display) {
g_last_tx_build_error = TxBuildError::None;
if (!g_inflight_active) {
return false;
}
@@ -510,19 +705,44 @@ static bool send_inflight_batch(uint32_t ts_for_display) {
input.err_tx = g_sender_faults.lora_tx_fail > 255 ? 255 : static_cast<uint8_t>(g_sender_faults.lora_tx_fail);
input.err_last = static_cast<uint8_t>(g_sender_last_error);
input.err_rx_reject = static_cast<uint8_t>(g_sender_rx_reject_reason);
uint8_t energy_regressions = 0;
uint8_t phase_clamps = 0;
for (uint8_t i = 0; i < input.n; ++i) {
input.energy_wh[i] = kwh_to_wh_from_float(g_inflight_samples[i].energy_total_kwh);
if (!float_to_i16_w(g_inflight_samples[i].phase_power_w[0], input.p1_w[i]) ||
!float_to_i16_w(g_inflight_samples[i].phase_power_w[1], input.p2_w[i]) ||
!float_to_i16_w(g_inflight_samples[i].phase_power_w[2], input.p3_w[i])) {
return false;
if (i > 0 && input.energy_wh[i] < input.energy_wh[i - 1]) {
input.energy_wh[i] = input.energy_wh[i - 1];
if (energy_regressions < 255) {
energy_regressions++;
}
}
bool c1 = false;
bool c2 = false;
bool c3 = false;
input.p1_w[i] = float_to_i16_w_clamped(g_inflight_samples[i].phase_power_w[0], c1);
input.p2_w[i] = float_to_i16_w_clamped(g_inflight_samples[i].phase_power_w[1], c2);
input.p3_w[i] = float_to_i16_w_clamped(g_inflight_samples[i].phase_power_w[2], c3);
if (c1 && phase_clamps < 255) {
phase_clamps++;
}
if (c2 && phase_clamps < 255) {
phase_clamps++;
}
if (c3 && phase_clamps < 255) {
phase_clamps++;
}
}
if (SERIAL_DEBUG_MODE && (energy_regressions > 0 || phase_clamps > 0)) {
serial_debug_printf("tx: sanitize batch_id=%u energy_regress=%u phase_clamps=%u",
g_inflight_batch_id,
static_cast<unsigned>(energy_regressions),
static_cast<unsigned>(phase_clamps));
}
static uint8_t encoded[BATCH_MAX_COMPRESSED];
size_t encoded_len = 0;
uint32_t encode_start = millis();
if (!encode_batch(input, encoded, sizeof(encoded), &encoded_len)) {
g_last_tx_build_error = TxBuildError::Encode;
return false;
}
uint32_t encode_ms = millis() - encode_start;
@@ -568,6 +788,13 @@ static bool send_meter_batch(uint32_t ts_for_display) {
g_last_sent_batch_id = g_inflight_batch_id;
g_batch_ack_pending = true;
} else {
if (g_last_tx_build_error == TxBuildError::Encode) {
serial_debug_printf("tx: encode failed batch_id=%u dropped", g_inflight_batch_id);
note_fault(g_sender_faults, g_sender_last_error, g_sender_last_error_utc, g_sender_last_error_ms, FaultType::Decode);
display_set_last_error(g_sender_last_error, g_sender_last_error_utc, g_sender_last_error_ms);
finish_inflight_batch();
return false;
}
g_inflight_active = false;
g_inflight_count = 0;
g_inflight_batch_id = 0;
@@ -587,6 +814,15 @@ static bool send_sync_request() {
g_inflight_sync_request = true;
g_inflight_count = 0;
g_inflight_batch_id = g_batch_id;
if (SERIAL_DEBUG_MODE && g_build_attempts > 0) {
serial_debug_printf("batch: id=%u desired=%u attempts=%u valid=%u invalid=%u err_last=%u sync=1",
g_inflight_batch_id,
static_cast<unsigned>(METER_BATCH_MAX_SAMPLES),
static_cast<unsigned>(g_build_attempts),
static_cast<unsigned>(g_build_valid),
static_cast<unsigned>(g_build_invalid),
static_cast<unsigned>(g_sender_last_error));
}
bool ok = send_inflight_batch(time_get_utc());
if (ok) {
g_last_sent_batch_id = g_inflight_batch_id;
@@ -698,7 +934,6 @@ void setup() {
#endif
watchdog_init();
g_boot_ms = millis();
g_role = detect_role();
init_device_ids(g_short_id, g_device_id, sizeof(g_device_id));
display_set_role(g_role);
@@ -718,6 +953,11 @@ void setup() {
power_sender_init();
power_configure_unused_pins_sender();
meter_init();
#ifdef ARDUINO_ARCH_ESP32
if (!meter_reader_start()) {
serial_debug_printf("meter: using inline polling fallback");
}
#endif
g_last_sample_ms = millis() - METER_SAMPLE_INTERVAL_MS;
g_last_send_ms = millis();
g_last_sync_request_ms = millis() - SYNC_REQUEST_INTERVAL_MS;
@@ -775,42 +1015,33 @@ static void sender_loop() {
g_batch_retry_count);
}
if (g_time_acquired) {
const char *frame = nullptr;
size_t frame_len = 0;
if (meter_poll_frame(frame, frame_len)) {
MeterData parsed = {};
parsed.energy_total_kwh = NAN;
parsed.total_power_w = NAN;
parsed.phase_power_w[0] = NAN;
parsed.phase_power_w[1] = NAN;
parsed.phase_power_w[2] = NAN;
parsed.valid = false;
if (meter_parse_frame(frame, frame_len, parsed)) {
g_last_meter_data = parsed;
g_last_meter_valid = true;
g_last_meter_rx_ms = now_ms;
g_meter_stale_seconds = 0;
}
}
meter_reader_pump(now_ms);
if (now_ms - g_last_sample_ms >= METER_SAMPLE_INTERVAL_MS) {
g_last_sample_ms = now_ms;
if (g_time_acquired) {
while (now_ms - g_last_sample_ms >= METER_SAMPLE_INTERVAL_MS) {
g_last_sample_ms += METER_SAMPLE_INTERVAL_MS;
MeterData data = {};
data.short_id = g_short_id;
strncpy(data.device_id, g_device_id, sizeof(data.device_id));
data.energy_total_kwh = NAN;
data.total_power_w = NAN;
data.phase_power_w[0] = NAN;
data.phase_power_w[1] = NAN;
data.phase_power_w[2] = NAN;
bool meter_ok = g_last_meter_valid;
g_build_attempts++;
uint32_t meter_age_ms = g_last_meter_valid ? (now_ms - g_last_meter_rx_ms) : UINT32_MAX;
// Reuse recent good samples to bridge short parser gaps without accepting stale data forever.
bool meter_ok = g_last_meter_valid && meter_age_ms <= METER_SAMPLE_MAX_AGE_MS;
if (meter_ok) {
data.energy_total_kwh = g_last_meter_data.energy_total_kwh;
data.total_power_w = g_last_meter_data.total_power_w;
data.phase_power_w[0] = g_last_meter_data.phase_power_w[0];
data.phase_power_w[1] = g_last_meter_data.phase_power_w[1];
data.phase_power_w[2] = g_last_meter_data.phase_power_w[2];
uint32_t age_ms = now_ms - g_last_meter_rx_ms;
g_meter_stale_seconds = age_ms >= 1000 ? (age_ms / 1000) : 0;
g_meter_stale_seconds = meter_age_ms >= 1000 ? (meter_age_ms / 1000) : 0;
} else {
g_meter_stale_seconds++;
g_meter_stale_seconds = g_last_meter_valid ? (meter_age_ms / 1000) : (g_meter_stale_seconds + 1);
}
if (!meter_ok) {
note_fault(g_sender_faults, g_sender_last_error, g_sender_last_error_utc, g_sender_last_error_ms, FaultType::MeterRead);
@@ -822,14 +1053,27 @@ static void sender_loop() {
data.battery_voltage_v = g_last_battery_voltage_v;
data.battery_percent = g_last_battery_percent;
data.rx_reject_reason = static_cast<uint8_t>(g_sender_rx_reject_reason);
data.ts_utc = time_get_utc();
uint32_t sample_ts_utc = time_get_utc();
if (sample_ts_utc > 0 && now_ms > g_last_sample_ms) {
uint32_t lag_s = (now_ms - g_last_sample_ms) / 1000;
if (sample_ts_utc > lag_s) {
sample_ts_utc -= lag_s;
}
}
data.ts_utc = sample_ts_utc;
data.valid = meter_ok;
g_last_sample_ts_utc = data.ts_utc;
g_build_samples[g_build_count++] = data;
if (g_build_count >= METER_BATCH_MAX_SAMPLES) {
batch_queue_enqueue(g_build_samples, g_build_count);
g_build_count = 0;
bool appended = append_meter_sample(data, meter_ok);
if (SERIAL_DEBUG_MODE) {
serial_debug_printf("sample: i=%lu ok=%u appended=%u e_kwh=%.3f p1=%.1f p2=%.1f p3=%.1f ms=%lu",
static_cast<unsigned long>(g_build_attempts),
meter_ok ? 1U : 0U,
appended ? 1U : 0U,
static_cast<double>(data.energy_total_kwh),
static_cast<double>(data.phase_power_w[0]),
static_cast<double>(data.phase_power_w[1]),
static_cast<double>(data.phase_power_w[2]),
static_cast<unsigned long>(now_ms));
}
display_set_last_meter(data);
display_set_last_read(meter_ok, data.ts_utc);
@@ -837,7 +1081,18 @@ static void sender_loop() {
if (!g_batch_ack_pending && now_ms - g_last_send_ms >= METER_SEND_INTERVAL_MS) {
g_last_send_ms = now_ms;
send_meter_batch(last_sample_ts());
if (g_build_count > 0) {
batch_queue_enqueue(g_build_samples, g_build_count);
g_build_count = 0;
reset_build_counters();
}
if (g_batch_count > 0) {
send_meter_batch(last_sample_ts());
} else if (g_build_attempts > 0) {
if (send_sync_request()) {
reset_build_counters();
}
}
}
} else {
if (!g_batch_ack_pending && now_ms - g_last_sync_request_ms >= SYNC_REQUEST_INTERVAL_MS) {

View File

@@ -4,7 +4,9 @@
#include <stdlib.h>
#include <string.h>
static constexpr uint32_t METER_FRAME_TIMEOUT_MS = 1500;
// LoRa TX/RX windows can block the main loop for several seconds at SF12.
// Keep partial frame state long enough so valid telegrams are not dropped.
static constexpr uint32_t METER_FRAME_TIMEOUT_MS = 20000;
static constexpr size_t METER_FRAME_MAX = 512;
enum class MeterRxState : uint8_t {
@@ -24,6 +26,10 @@ static uint32_t g_rx_timeout = 0;
static uint32_t g_last_log_ms = 0;
void meter_init() {
#ifdef ARDUINO_ARCH_ESP32
// Buffer enough serial data to survive long LoRa blocking sections.
Serial2.setRxBufferSize(8192);
#endif
Serial2.begin(9600, SERIAL_7E1, PIN_METER_RX, -1);
}

View File

@@ -1,4 +1,5 @@
#include "time_manager.h"
#include "config.h"
#include <time.h>
static bool g_time_synced = false;
@@ -12,15 +13,20 @@ static void note_last_sync(uint32_t epoch) {
g_last_sync_utc = epoch;
}
static void ensure_timezone_set() {
if (g_tz_set) {
return;
}
setenv("TZ", TIMEZONE_TZ, 1);
tzset();
g_tz_set = true;
}
void time_receiver_init(const char *ntp_server_1, const char *ntp_server_2) {
const char *server1 = (ntp_server_1 && ntp_server_1[0] != '\0') ? ntp_server_1 : "pool.ntp.org";
const char *server2 = (ntp_server_2 && ntp_server_2[0] != '\0') ? ntp_server_2 : "time.nist.gov";
configTime(0, 0, server1, server2);
if (!g_tz_set) {
setenv("TZ", "CET-1CEST,M3.5.0/2,M10.5.0/3", 1);
tzset();
g_tz_set = true;
}
ensure_timezone_set();
}
uint32_t time_get_utc() {
@@ -40,11 +46,7 @@ bool time_is_synced() {
}
void time_set_utc(uint32_t epoch) {
if (!g_tz_set) {
setenv("TZ", "CET-1CEST,M3.5.0/2,M10.5.0/3", 1);
tzset();
g_tz_set = true;
}
ensure_timezone_set();
struct timeval tv;
tv.tv_sec = epoch;
tv.tv_usec = 0;

View File

@@ -57,6 +57,32 @@ static HistoryJob g_history = {};
static constexpr size_t SD_LIST_MAX_FILES = 200;
static constexpr size_t SD_DOWNLOAD_MAX_PATH = 160;
static String format_utc_timestamp(uint32_t ts_utc) {
if (ts_utc == 0) {
return "n/a";
}
time_t t = static_cast<time_t>(ts_utc);
struct tm tm_utc;
gmtime_r(&t, &tm_utc);
char buf[32];
snprintf(buf, sizeof(buf), "%04d-%02d-%02d %02d:%02d:%02d UTC",
tm_utc.tm_year + 1900,
tm_utc.tm_mon + 1,
tm_utc.tm_mday,
tm_utc.tm_hour,
tm_utc.tm_min,
tm_utc.tm_sec);
return String(buf);
}
static uint32_t timestamp_age_seconds(uint32_t ts_utc) {
uint32_t now_utc = time_get_utc();
if (ts_utc == 0 || now_utc < ts_utc) {
return 0;
}
return now_utc - ts_utc;
}
static int32_t round_power_w(float value) {
if (isnan(value)) {
return 0;
@@ -374,6 +400,11 @@ static String render_sender_block(const SenderStatus &status) {
if (!status.has_data) {
s += "No data";
} else {
s += "Last update: " + format_utc_timestamp(status.last_update_ts_utc);
if (time_is_synced()) {
s += " (" + String(timestamp_age_seconds(status.last_update_ts_utc)) + "s ago)";
}
s += "<br>";
s += "Energy: " + String(status.last_data.energy_total_kwh, 2) + " kWh<br>";
s += "Power: " + String(round_power_w(status.last_data.total_power_w)) + " W<br>";
s += "P1/P2/P3: " + String(round_power_w(status.last_data.phase_power_w[0])) + " / " +