29 Commits

Author SHA1 Message Date
7e5e23e56c Scale ACK RX window to LoRa airtime
- Compute ACK receive window from airtime with bounds and margin
- Retry once if initial window misses
- Document ACK window sizing
2026-02-04 01:21:42 +01:00
1024aa3dd0 Add RX reject reasons to telemetry and UI
BACKWARD-INCOMPATIBLE: MeterBatch schema bumped to v2 with err_rx_reject.
- Track and log RX reject reasons (CRC/protocol/role/payload/length/id/batch)
- Include rx_reject in sender telemetry JSON and receiver web UI
- Add lora_receive reject reason logging under SERIAL_DEBUG_MODE
2026-02-04 01:01:49 +01:00
0e7214d606 Repeat batch ACKs to cover RX latency
- Add ACK_REPEAT_COUNT/ACK_REPEAT_DELAY_MS and repeat ACK sends
- Update README with repeat-ACK behavior
2026-02-04 00:53:06 +01:00
5a86d1bd30 Add LoRa TX timing diagnostics
- Log idle/begin/write/end timing for LoRa TX under SERIAL_DEBUG_MODE
- Document TX timing logs in README
2026-02-04 00:48:20 +01:00
0a99bf3268 Send batch ACKs immediately after reassembly
- Move ACK ahead of MQTT/web work to meet sender 400ms window
- Update ACK log format and document early-ACK behavior
2026-02-04 00:36:40 +01:00
4e06f7a96d Log ACK transmit and reject cases
- Add debug log for ACK TX with batch/sender/receiver ids
- Log rejected ACKs to help diagnose mismatched ids or batches
2026-02-04 00:35:01 +01:00
fde4719a50 Improve timesync acquisition and logging
- Add boot acquisition mode with wider RX windows until first TimeSync
- Log sender TimeSync RX results and receiver TX events
- Document acquisition behavior
2026-02-04 00:33:05 +01:00
e0d35d49bc Validate RTC epoch before setting time
- Reject out-of-range DS3231 epochs and log accept/reject under SERIAL_DEBUG_MODE
- Document RTC validation so LoRa TimeSync can recover
2026-02-04 00:31:10 +01:00
e8fb8680cb Gate slow timesync on LoRa reception
- Keep sender in fast TimeSync listen mode until it receives a LoRa beacon
- Reset scheduler when interval changes to avoid stuck timing
2026-02-04 00:03:38 +01:00
cbf0f7d9b9 Expose timesync error in MQTT and web UI
BACKWARD-INCOMPATIBLE: MQTT faults payload now always includes err_last/err_last_text and err_last_age (schema change).
2026-02-04 00:01:38 +01:00
f7a2503d7a Add timesync burst handling and sender-only timeout
- Add TimeSync fault code and labels in UI/SD/web docs
- Trigger receiver beacon bursts on sender drift, but keep errors sender-local
- Sender flags TimeSync only after TIME_SYNC_ERROR_TIMEOUT_MS
2026-02-03 23:40:11 +01:00
43893c24d1 Keep receiver timesync fast and extend sender fast window
- Receiver now sends time sync every 60s indefinitely (mains powered)
- Sender stays in fast timesync listen mode for first 60s even with RTC
2026-02-03 22:28:36 +01:00
cd4c99f125 Calibrate battery ADC and document LiPo curve
- Add BATTERY_CAL config and debug logging for raw ADC samples
- Use LiPo voltage curve (4.2V full, 2.9V empty) for % mapping
- Document battery calibration, curve, and debug output in README
2026-02-03 22:12:48 +01:00
b8a4c27daa Average battery ADC samples
- Read battery 5 times and average for a steadier voltage estimate
2026-02-02 23:28:54 +01:00
2199627a35 Fix OLED autosleep timing and battery sampling cadence
- Track last OLED activity to avoid double timeout; keep power gating on transitions
- Copy TZ before setenv() in timegm_fallback to avoid invalid pointer reuse
- Add BATTERY_SAMPLE_INTERVAL_MS and only refresh cache at batch start when due
- Keep battery sampling to a single ADC read (Arduino core lacks explicit ADC power gating)
2026-02-02 23:01:55 +01:00
90d830da6f Keep receiver LoRa in continuous RX
- Add lora_receive_continuous() helper and use it after init and TX (ACK/time sync)

- Ensure receiver returns to RX immediately after lora_send

- Document continuous RX behavior in README
2026-02-02 22:17:09 +01:00
237e392c02 Make IEC 62056-21 meter input non-blocking
- Add RX state machine with frame buffer, timeouts, and debug counters

- Expose meter_poll_frame/meter_parse_frame and reuse existing OBIS parsing

- Use cached last-valid frame at 1 Hz sampling to avoid blocking

- Document non-blocking meter handling in README
2026-02-02 22:03:58 +01:00
8e6c64a18e Reduce sender power draw (RX windows + CPU/WiFi/ADC/pins)
- Add LoRa idle/sleep/receive-window helpers and use short RX windows for ACK/time sync

- Schedule sender time-sync windows (fast/slow) and track RX vs sleep time in debug

- Lower sender power (80 MHz CPU, WiFi/BT off, reduced ADC sampling, unused pins pulldown)

- Make SERIAL_DEBUG_MODE a build flag, add prod envs with debug off, and document changes
2026-02-02 21:44:04 +01:00
a4d9be1903 Harden history device ID validation and SD download filename 2026-02-02 21:19:44 +01:00
0e12b406de Harden web UI auth, input handling, and SD path validation
- Add optional Basic Auth with NVS-backed credentials and STA/AP flags; protect status, wifi, history, and download routes

- Stop pre-filling WiFi/MQTT/Web UI password fields; keep stored secrets on blank and add clear-password checkboxes

- Add HTML escaping + URL encoding helpers and apply to user-controlled strings; add unit test

- Harden /sd/download path validation (prefix, length, dotdot, slashes) and log rejections

- Enforce protocol version in LoRa receive and release GPIO14 before SD init

- Update README security, SD, and GPIO sharing notes
2026-02-02 21:08:05 +01:00
b5477262ea Add SD history UI and pin remap
- Add SD history chart + download listing to web UI
- Use HSPI for SD and fix SD pin mapping
- Swap role/OLED control pins and update role detection
- Update README pin mapping and SD/history docs
2026-02-02 01:43:54 +01:00
d32ae30014 Move AP credentials to config and clarify STA UI access 2026-02-02 00:23:52 +01:00
f3af5b3f1c Add SD logging and update docs
- Add optional microSD CSV logging per sender/day on receiver
- Wire logger into receiver packet handling
- Document new batch header fields, build envs, and SD logging
- Make sender links open in a new tab
2026-02-02 00:22:35 +01:00
5085b9ad3d Improve receiver web UI fields and manual 2026-02-02 00:00:55 +01:00
a03c2cdb07 Include sender error counters in batch payload 2026-02-02 00:00:29 +01:00
13f2f02e42 Tidy sender page layout and use SF12 2026-02-01 23:38:43 +01:00
16c1b90b1e Add payload codec test envs and enable serial debug 2026-02-01 22:54:07 +01:00
e5c4e04ff9 Update README for binary batch payload and SF11 2026-02-01 22:42:26 +01:00
e24798eb55 Use compact binary payload for LoRa batches 2026-02-01 22:37:21 +01:00
28 changed files with 2430 additions and 344 deletions

200
README.md
View File

@@ -1,6 +1,6 @@
# DD3 LoRa Bridge (Multi-Sender)
Unified firmware for LilyGO T3 v1.6.1 (ESP32 + SX1276 + SSD1306) that runs as **Sender** or **Receiver** based on a GPIO jumper. Senders read DD3 smart meter values, compress JSON, and transmit over LoRa. The receiver validates packets, publishes to MQTT, provides a web UI, and shows per-sender status on the OLED.
Unified firmware for LilyGO T3 v1.6.1 (ESP32 + SX1276 + SSD1306) that runs as **Sender** or **Receiver** based on a GPIO jumper. Senders read DD3 smart meter values and transmit compact binary batches over LoRa. The receiver validates packets, publishes to MQTT, provides a web UI, and shows per-sender status on the OLED.
## Hardware
Board: **LilyGO T3 LoRa32 v1.6.1** (ESP32 + SX1276 + SSD1306 128x64 + LiPo)
@@ -21,22 +21,31 @@ Variants:
- SCL: GPIO22
- RST: **not used** (SSD1306 init uses `-1` reset pin)
- I2C address: 0x3C
- microSD (on-board)
- CS: GPIO13
- MOSI: GPIO15
- SCK: GPIO14
- MISO: GPIO2
- I2C RTC (DS3231)
- SDA: GPIO21
- SCL: GPIO22
- I2C address: 0x68
- Battery ADC: GPIO35 (via on-board divider)
- **Role select**: GPIO13 (INPUT_PULLDOWN)
- LOW = Sender
- HIGH = Receiver
- **OLED control**: GPIO14 (INPUT_PULLDOWN)
- **Role select**: GPIO14 (INPUT_PULLDOWN, sampled at boot, **shared with SD SCK**)
- HIGH = Sender
- LOW/floating = Receiver
- **OLED control**: GPIO13 (INPUT_PULLDOWN, sender only, **shared with SD CS**)
- HIGH = force OLED on
- LOW = allow auto-off after timeout
- Not used on receiver (OLED always on)
- Smart meter UART RX: GPIO34 (input-only, always connected)
### Notes on GPIOs
- GPIO34/35/36/39 are input-only and have **no internal pullups/pulldowns**.
- Strap pins (GPIO0/2/4/5/12/15) can affect boot; avoid for role or control jumpers.
- GPIO14 is shared between role select and SD SCK. **Do not attach the role jumper in Receiver mode if the SD card is connected/used**, and never force GPIO14 high when using SD.
- GPIO13 is shared between OLED control and SD CS. Avoid driving OLED control when SD is active.
- Receiver firmware releases GPIO14 to `INPUT` (no pulldown) after boot before SD SPI init.
## Firmware Roles
### Sender (battery-powered)
@@ -45,8 +54,9 @@ Variants:
- Energy total: 1-0:1.8.0*255
- Total power: 1-0:16.7.0*255
- Phase power: 36.7 / 56.7 / 76.7
- Meter input is parsed via a non-blocking RX state machine; the last valid frame is reused for 1 Hz sampling.
- Reads battery voltage and estimates SoC.
- Builds JSON payload, compresses, wraps in LoRa packet, transmits.
- Builds compact binary batch payload, wraps in LoRa packet, transmits.
- Light sleeps between meter reads; batches are sent every 30s.
- Listens for LoRa time sync packets to set UTC clock.
- Uses DS3231 RTC after boot if no time sync has arrived yet.
@@ -59,9 +69,8 @@ void sender_loop() {
read_battery(data); // VBAT + SoC
if (time_to_send_batch()) {
json = meterBatchToJson(samples, batch_id); // bat_v per batch, t_first/t_last included
compressed = compressBuffer(json);
lora_send(packet(MeterBatch, compressed));
payload = encode_batch(samples, batch_id); // compact binary batch
lora_send(packet(MeterBatch, payload));
}
display_set_last_meter(data);
@@ -79,14 +88,14 @@ void sender_loop() {
bool meter_read(MeterData &data); // parse OBIS fields
void read_battery(MeterData &data); // ADC -> volts + percent
bool meterDataToJson(const MeterData&, String&);
bool compressBuffer(const uint8_t*, size_t, uint8_t*, size_t, size_t&);
bool compressBuffer(const uint8_t*, size_t, uint8_t*, size_t, size_t&); // MeterData only
bool lora_send(const LoraPacket &pkt); // add header + CRC16 and transmit
```
### Receiver (USB-powered)
- WiFi STA connect using stored config; if not available/fails, starts AP.
- NTP sync (UTC) and local display in Europe/Berlin.
- Receives LoRa packets, verifies CRC16, decompresses, parses JSON.
- Receives LoRa packets, verifies CRC16, decompresses MeterData JSON, decodes binary batches.
- Publishes meter JSON to MQTT.
- Sends ACKs for MeterBatch packets and de-duplicates by batch_id.
- Web UI:
@@ -105,8 +114,8 @@ void receiver_loop() {
mqtt_publish_state(data);
}
} else if (pkt.type == MeterBatch) {
json = reassemble_and_decompress_batch(pkt);
for (sample in jsonToMeterBatch(json)) { // uses t_first/t_last for jittered timestamps
batch = reassemble_and_decode_batch(pkt);
for (sample in batch) {
update_sender_status(sample);
mqtt_publish_state(sample);
}
@@ -114,7 +123,7 @@ void receiver_loop() {
}
if (time_to_send_timesync()) {
time_send_timesync(self_short_id); // 60s for first 10 min, then hourly if RTC is present
time_send_timesync(self_short_id); // always every 60s (receiver is mains-powered)
}
mqtt_loop();
@@ -124,11 +133,13 @@ void receiver_loop() {
}
```
Receiver keeps the SX1276 in continuous RX, re-entering RX after any transmit (ACK or time sync).
**Key receiver functions**:
```cpp
bool lora_receive(LoraPacket &pkt, uint32_t timeout_ms);
bool jsonToMeterData(const String &json, MeterData &data);
bool jsonToMeterBatch(const String &json, MeterData *samples, size_t max, size_t &count);
bool decode_batch(const uint8_t *buf, size_t len, BatchInput *out);
bool mqtt_publish_state(const MeterData &data);
void web_server_loop(); // AP or STA UI
void time_send_timesync(uint16_t self_id);
@@ -170,16 +181,17 @@ Packet layout:
[1] role (0=sender, 1=receiver)
[2..3] device_id_short (uint16)
[4] payload_type (0=meter, 1=test, 2=time_sync, 3=meter_batch, 4=ack)
[5..N-3] compressed payload
[5..N-3] payload bytes (compressed JSON for MeterData, binary for MeterBatch/Test/TimeSync)
[N-2..N-1] CRC16 (bytes 0..N-3)
```
LoRa radio settings:
- Frequency: **433 MHz** or **868 MHz** (set by build env via `LORA_FREQUENCY_HZ`)
- SF10, BW 125 kHz, CR 4/5, CRC on, Sync Word 0x34
- SF12, BW 125 kHz, CR 4/5, CRC on, Sync Word 0x34
- When `SERIAL_DEBUG_MODE` is enabled, LoRa TX logs include timing breakdowns for `idle/begin/write/end` to diagnose long transmit times.
## Data Format
JSON payload (sender + MQTT):
MeterData JSON (sender + MQTT):
```json
{
@@ -191,40 +203,48 @@ JSON payload (sender + MQTT):
"p2_w": 450.00,
"p3_w": 0.00,
"bat_v": 3.92,
"bat_pct": 78
"bat_pct": 78,
"rx_reject": 0,
"rx_reject_text": "none"
}
```
MeterBatch JSON (compressed over LoRa) uses per-field arrays with integer units for easier ingestion:
### Binary MeterBatch Payload (LoRa)
Fixed header (little-endian):
- `magic` u16 = 0xDDB3
- `schema` u8 = 2
- `flags` u8 = 0x01 (bit0 = signed phases)
- `sender_id` u16 (1..NUM_SENDERS, maps to `EXPECTED_SENDER_IDS`)
- `batch_id` u16
- `t_last` u32 (unix seconds of last sample)
- `dt_s` u8 (seconds, >0)
- `n` u8 (sample count, <=30)
- `battery_mV` u16
- `err_m` u8 (meter read failures, sender-side counter)
- `err_d` u8 (decode failures, sender-side counter)
- `err_tx` u8 (LoRa TX failures, sender-side counter)
- `err_last` u8 (last error code: 0=None, 1=MeterRead, 2=Decode, 3=LoraTx, 4=TimeSync)
- `err_rx_reject` u8 (last RX reject reason)
- `err_rx_reject` u8 (last RX reject reason: 0=None, 1=crc_fail, 2=bad_protocol_version, 3=wrong_role, 4=wrong_payload_type, 5=length_mismatch, 6=device_id_mismatch, 7=batch_id_mismatch)
- MQTT faults payload also includes `err_last_text` (string) and `err_last_age` (seconds).
```json
{
"schema": 1,
"sender": "s01",
"batch_id": 1842,
"t0": 1738288000,
"t_first": 1738288000,
"t_last": 1738288030,
"dt_s": 1,
"n": 3,
"e_wh": [123456700, 123456701, 123456701],
"p_w": [930, 940, 950],
"p1_w": [480, 490, 500],
"p2_w": [450, 450, 450],
"p3_w": [0, 0, 0],
"bat_v": 3.92,
"meta": {
"rssi": -92,
"snr": 7.5,
"rx_ts": 1738288031
}
}
```
Body:
- `E0` u32 (absolute energy in Wh)
- `dE[1..n-1]` ULEB128 (delta vs previous, >=0)
- `P1_0` s16 (absolute W)
- `dP1[1..n-1]` signed varint (ZigZag + ULEB128)
- `P2_0` s16
- `dP2[1..n-1]` signed varint
- `P3_0` s16
- `dP3[1..n-1]` signed varint
Notes:
- `sender` maps to `EXPECTED_SENDER_IDS` order (`s01` = first sender).
- `meta` is injected by the receiver after batch reassembly.
- `bat_v` is a single batch-level value (percent is calculated locally).
- Receiver reconstructs timestamps from `t_last` and `dt_s`.
- Total power is computed on receiver as `p1 + p2 + p3`.
- Sender error counters are carried in the batch header and applied to all samples.
- Receiver ACKs MeterBatch as soon as the batch is reassembled, before MQTT/web/UI work, to avoid missing the sender ACK window.
- Receiver repeats ACKs (`ACK_REPEAT_COUNT`) spaced by `ACK_REPEAT_DELAY_MS` to cover sender RX latency.
- Sender ACK RX window is derived from LoRa airtime (bounded min/max) and retried once if the first window misses.
## Device IDs
- Derived from WiFi STA MAC.
@@ -239,23 +259,43 @@ inline constexpr uint16_t EXPECTED_SENDER_IDS[NUM_SENDERS] = { 0xF19C };
```
## OLED Behavior
- Sender: OLED stays **ON for 10 seconds** on each wake, then powers down for sleep.
- Sender: OLED stays on for `OLED_AUTO_OFF_MS` after boot or last activity.
- Activity is detected while `PIN_OLED_CTRL` is held high, or on the high->low edge when the control is released.
- Receiver: OLED is always on (no auto-off).
- Pages rotate every 4s.
## Power & Battery
- Sender disables WiFi/BLE, reads VBAT via ADC, uses linear SoC map:
- 3.0 V = 0%
- Sender disables WiFi/BLE, reads VBAT via ADC, and converts voltage to % using a LiPo curve:
- 4.2 V = 100%
- 2.9 V = 0%
- linear interpolation between curve points
- Uses deep sleep between cycles (`SENDER_WAKE_INTERVAL_SEC`).
- Sender CPU is throttled to 80 MHz and LoRa RX is only enabled in short windows (ACK wait or time-sync).
- Battery sampling averages 5 ADC reads and updates at most once per `BATTERY_SAMPLE_INTERVAL_MS` (default 60s).
- `BATTERY_CAL` applies a scale factor to match measured VBAT.
- When `SERIAL_DEBUG_MODE` is enabled, each ADC read logs the 5 raw samples, average, and computed voltage.
## Web UI
- AP SSID: `DD3-Bridge-<short_id>`
- AP password: `changeme123`
- AP SSID: `DD3-Bridge-<short_id>` (prefix configurable)
- AP password: `changeme123` (configurable)
- Endpoints:
- `/`: status overview
- `/wifi`: WiFi/MQTT/NTP config (AP and STA)
- `/sender/<device_id>`: per-sender details
- Sender IDs on `/` are clickable (open sender page in a new tab).
- In STA mode, the UI is also available via the board's IP/hostname on your WiFi network.
- Main page shows SD card file listing (downloadable).
- Sender page includes a history chart (power) with configurable range/resolution/mode.
## Security
- Basic Auth is supported for the web UI. In STA mode it is enabled by default; AP mode is optional.
- Config flags in `include/config.h`:
- `WEB_AUTH_REQUIRE_STA` (default `true`)
- `WEB_AUTH_REQUIRE_AP` (default `false`)
- `WEB_AUTH_DEFAULT_USER` / `WEB_AUTH_DEFAULT_PASS`
- Web credentials are stored in NVS. `/wifi`, `/sd/download`, `/history/*`, `/`, `/sender/*`, and `/manual` require auth when enabled.
- Password inputs are not prefilled. Leaving a password blank keeps the stored value; use the "clear password" checkbox to erase it.
- User-controlled strings are HTML-escaped before embedding in pages.
## MQTT
- Topic: `smartmeter/<deviceId>/state`
@@ -271,39 +311,71 @@ inline constexpr uint16_t EXPECTED_SENDER_IDS[NUM_SENDERS] = { 0xF19C };
- Enable/disable with `ENABLE_DS3231` in `include/config.h`.
- Receiver time sync packets set the RTC.
- On boot, if no LoRa time sync has arrived yet, the sender uses the RTC time as the initial `ts_utc`.
- When no RTC is present or enabled, the receiver keeps sending time sync every 60 seconds.
- Receiver keeps sending time sync every 60 seconds.
- If a senders timestamps drift from receiver time by more than `TIME_SYNC_DRIFT_THRESHOLD_SEC`, the receiver enters a burst mode (every `TIME_SYNC_BURST_INTERVAL_MS` for `TIME_SYNC_BURST_DURATION_MS`).
- Sender raises a local `TimeSync` error if it has not received a time beacon for `TIME_SYNC_ERROR_TIMEOUT_MS` (default 2 days). This is shown on the sender OLED only and is not sent over LoRa.
- RTC loads are validated (reject out-of-range epochs) so LoRa TimeSync can recover if the RTC is wrong.
- Sender uses a short “fast acquisition” mode on boot (until first LoRa TimeSync) with wider RX windows to avoid phase-miss.
## Build Environments
- `lilygo-t3-v1-6-1`: production build
- `lilygo-t3-v1-6-1`: production build (debug on)
- `lilygo-t3-v1-6-1-test`: test build with `ENABLE_TEST_MODE`
- `lilygo-t3-v1-6-1-868`: production build for 868 MHz modules
- `lilygo-t3-v1-6-1-868`: production build for 868 MHz modules (debug on)
- `lilygo-t3-v1-6-1-868-test`: test build for 868 MHz modules
- `lilygo-t3-v1-6-1-payload-test`: build with `PAYLOAD_CODEC_TEST`
- `lilygo-t3-v1-6-1-868-payload-test`: 868 MHz build with `PAYLOAD_CODEC_TEST`
- `lilygo-t3-v1-6-1-prod`: production build with serial debug off
- `lilygo-t3-v1-6-1-868-prod`: 868 MHz production build with serial debug off
## Config Knobs
Key timing settings in `include/config.h`:
- `METER_SAMPLE_INTERVAL_MS`
- `METER_SEND_INTERVAL_MS`
- `BATCH_ACK_TIMEOUT_MS`
- `BATCH_MAX_RETRIES`
- `METER_SAMPLE_INTERVAL_MS`
- `METER_SEND_INTERVAL_MS`
- `BATTERY_SAMPLE_INTERVAL_MS`
- `BATTERY_CAL`
- `BATCH_ACK_TIMEOUT_MS`
- `BATCH_MAX_RETRIES`
- `BATCH_QUEUE_DEPTH`
- `BATCH_RETRY_POLICY` (keep or drop on retry exhaustion)
- `SERIAL_DEBUG_MODE` / `SERIAL_DEBUG_DUMP_JSON`
- `SERIAL_DEBUG_MODE_FLAG` (build flag) / `SERIAL_DEBUG_DUMP_JSON`
- `LORA_SEND_BYPASS` (debug only)
- `ENABLE_SD_LOGGING` / `PIN_SD_CS`
- `SENDER_TIMESYNC_WINDOW_MS`
- `SENDER_TIMESYNC_CHECK_SEC_FAST` / `SENDER_TIMESYNC_CHECK_SEC_SLOW`
- `TIME_SYNC_DRIFT_THRESHOLD_SEC`
- `TIME_SYNC_BURST_INTERVAL_MS` / `TIME_SYNC_BURST_DURATION_MS`
- `TIME_SYNC_ERROR_TIMEOUT_MS`
- `SD_HISTORY_MAX_DAYS` / `SD_HISTORY_MIN_RES_MIN`
- `SD_HISTORY_MAX_BINS` / `SD_HISTORY_TIME_BUDGET_MS`
- `WEB_AUTH_REQUIRE_STA` / `WEB_AUTH_REQUIRE_AP` / `WEB_AUTH_DEFAULT_USER` / `WEB_AUTH_DEFAULT_PASS`
## Limits & Known Constraints
- **Compression**: uses lightweight RLE (good for JSON but not optimal).
- **Compression**: MeterData uses lightweight RLE (good for JSON but not optimal).
- **OBIS parsing**: supports IEC 62056-21 ASCII (Mode D); may need tuning for some meters.
- **Payload size**: single JSON frames < 256 bytes (ArduinoJson static doc); batch frames are chunked and reassembled.
- **Battery ADC**: uses simple linear calibration constant in `power_manager.cpp`.
- **Payload size**: single JSON frames < 256 bytes (ArduinoJson static doc); binary batch frames are chunked and reassembled (typically 1 chunk).
- **Battery ADC**: uses a divider (R44/R45 = 100K/100K) with a configurable `BATTERY_CAL` scale and LiPo % curve.
- **OLED**: no hardware reset line is used (matches working reference).
- **Batch ACKs**: sender waits for ACK after a batch and retries up to `BATCH_MAX_RETRIES` with `BATCH_ACK_TIMEOUT_MS` between attempts.
## SD Logging (Receiver)
Optional CSV logging to microSD (FAT32) when `ENABLE_SD_LOGGING = true`.
- Path: `/dd3/<device_id>/YYYY-MM-DD.csv`
- Columns:
`ts_utc,p_w,p1_w,p2_w,p3_w,e_kwh,bat_v,bat_pct,rssi,snr,err_m,err_d,err_tx,err_last`
- `err_last` is written as text (`meter`, `decode`, `loratx`) only on the last sample of a batch that reports an error.
- Files are downloadable from the main UI page.
- Downloads only allow absolute paths under `/dd3/`, reject `..`, backslashes, and repeated slashes, and enforce a max path length.
- History chart on sender page stream-parses CSVs and bins data in the background.
- SD uses the on-board microSD SPI pins (CS=13, MOSI=15, SCK=14, MISO=2).
## Files & Modules
- `include/config.h`, `src/config.cpp`: pins, radio settings, sender IDs
- `include/data_model.h`, `src/data_model.cpp`: MeterData + ID init
- `include/json_codec.h`, `src/json_codec.cpp`: JSON encode/decode
- `include/compressor.h`, `src/compressor.cpp`: RLE compression
- `include/lora_transport.h`, `src/lora_transport.cpp`: LoRa packet + CRC
- `src/payload_codec.h`, `src/payload_codec.cpp`: binary batch encoder/decoder
- `include/meter_driver.h`, `src/meter_driver.cpp`: IEC 62056-21 ASCII parse
- `include/power_manager.h`, `src/power_manager.cpp`: ADC + sleep
- `include/time_manager.h`, `src/time_manager.cpp`: NTP + time sync
@@ -315,10 +387,10 @@ Key timing settings in `include/config.h`:
- `src/main.cpp`: role detection and main loop
## Quick Start
1. Set role jumper on GPIO13:
1. Set role jumper on GPIO14:
- LOW: sender
- HIGH: receiver
2. OLED control on GPIO14:
2. OLED control on GPIO13:
- HIGH: always on
- LOW: auto-off after 10 minutes
3. Build and upload:

View File

@@ -39,8 +39,8 @@ constexpr uint8_t OLED_HEIGHT = 64;
constexpr uint8_t PIN_BAT_ADC = 35;
constexpr uint8_t PIN_ROLE = 13;
constexpr uint8_t PIN_OLED_CTRL = 14;
constexpr uint8_t PIN_ROLE = 14;
constexpr uint8_t PIN_OLED_CTRL = 13;
constexpr uint8_t PIN_METER_RX = 34;
@@ -49,7 +49,7 @@ constexpr uint8_t PIN_METER_RX = 34;
#define LORA_FREQUENCY_HZ 433E6
#endif
constexpr long LORA_FREQUENCY = LORA_FREQUENCY_HZ;
constexpr uint8_t LORA_SPREADING_FACTOR = 10;
constexpr uint8_t LORA_SPREADING_FACTOR = 12;
constexpr long LORA_BANDWIDTH = 125E3;
constexpr uint8_t LORA_CODING_RATE = 5;
constexpr uint8_t LORA_SYNC_WORD = 0x34;
@@ -60,22 +60,51 @@ constexpr uint32_t SENDER_WAKE_INTERVAL_SEC = 30;
constexpr uint32_t TIME_SYNC_INTERVAL_SEC = 60;
constexpr uint32_t TIME_SYNC_SLOW_INTERVAL_SEC = 3600;
constexpr uint32_t TIME_SYNC_FAST_WINDOW_MS = 10UL * 60UL * 1000UL;
constexpr uint32_t SENDER_TIMESYNC_WINDOW_MS = 300;
constexpr uint32_t SENDER_TIMESYNC_CHECK_SEC_FAST = 60;
constexpr uint32_t SENDER_TIMESYNC_CHECK_SEC_SLOW = 3600;
constexpr uint32_t TIME_SYNC_DRIFT_THRESHOLD_SEC = 10;
constexpr uint32_t TIME_SYNC_BURST_INTERVAL_MS = 10000;
constexpr uint32_t TIME_SYNC_BURST_DURATION_MS = 10UL * 60UL * 1000UL;
constexpr uint32_t TIME_SYNC_ERROR_TIMEOUT_MS = 2UL * 24UL * 60UL * 60UL * 1000UL;
constexpr bool ENABLE_DS3231 = true;
constexpr uint32_t OLED_PAGE_INTERVAL_MS = 4000;
constexpr uint32_t OLED_AUTO_OFF_MS = 10UL * 60UL * 1000UL;
constexpr uint32_t SENDER_OLED_READ_MS = 10000;
constexpr uint32_t METER_SAMPLE_INTERVAL_MS = 1000;
constexpr uint32_t METER_SEND_INTERVAL_MS = 30000;
constexpr uint32_t BATTERY_SAMPLE_INTERVAL_MS = 60000;
constexpr float BATTERY_CAL = 1.083f;
constexpr uint32_t BATCH_ACK_TIMEOUT_MS = 3000;
constexpr uint8_t ACK_REPEAT_COUNT = 3;
constexpr uint32_t ACK_REPEAT_DELAY_MS = 200;
constexpr uint8_t BATCH_MAX_RETRIES = 2;
constexpr uint8_t METER_BATCH_MAX_SAMPLES = 30;
constexpr uint8_t BATCH_QUEUE_DEPTH = 10;
constexpr BatchRetryPolicy BATCH_RETRY_POLICY = BatchRetryPolicy::Keep;
constexpr uint32_t WATCHDOG_TIMEOUT_SEC = 120;
constexpr bool ENABLE_HA_DISCOVERY = true;
constexpr bool SERIAL_DEBUG_MODE = false;
#ifndef SERIAL_DEBUG_MODE_FLAG
#define SERIAL_DEBUG_MODE_FLAG 0
#endif
constexpr bool SERIAL_DEBUG_MODE = SERIAL_DEBUG_MODE_FLAG != 0;
constexpr bool SERIAL_DEBUG_DUMP_JSON = false;
constexpr bool LORA_SEND_BYPASS = false;
constexpr bool ENABLE_SD_LOGGING = true;
constexpr uint8_t PIN_SD_CS = 13;
constexpr uint8_t PIN_SD_MOSI = 15;
constexpr uint8_t PIN_SD_MISO = 2;
constexpr uint8_t PIN_SD_SCK = 14;
constexpr uint16_t SD_HISTORY_MAX_DAYS = 30;
constexpr uint16_t SD_HISTORY_MIN_RES_MIN = 1;
constexpr uint16_t SD_HISTORY_MAX_BINS = 4000;
constexpr uint16_t SD_HISTORY_TIME_BUDGET_MS = 10;
constexpr const char *AP_SSID_PREFIX = "DD3-Bridge-";
constexpr const char *AP_PASSWORD = "changeme123";
constexpr bool WEB_AUTH_REQUIRE_STA = true;
constexpr bool WEB_AUTH_REQUIRE_AP = false;
constexpr const char *WEB_AUTH_DEFAULT_USER = "admin";
constexpr const char *WEB_AUTH_DEFAULT_PASS = "admin";
constexpr uint8_t NUM_SENDERS = 1;
inline constexpr uint16_t EXPECTED_SENDER_IDS[NUM_SENDERS] = {

View File

@@ -6,7 +6,19 @@ enum class FaultType : uint8_t {
None = 0,
MeterRead = 1,
Decode = 2,
LoraTx = 3
LoraTx = 3,
TimeSync = 4
};
enum class RxRejectReason : uint8_t {
None = 0,
CrcFail = 1,
BadProtocol = 2,
WrongRole = 3,
WrongPayloadType = 4,
LengthMismatch = 5,
DeviceIdMismatch = 6,
BatchIdMismatch = 7
};
struct FaultCounters {
@@ -32,6 +44,7 @@ struct MeterData {
uint32_t err_decode;
uint32_t err_lora_tx;
FaultType last_error;
uint8_t rx_reject_reason;
};
struct SenderStatus {
@@ -41,3 +54,4 @@ struct SenderStatus {
};
void init_device_ids(uint16_t &short_id, char *device_id, size_t device_id_len);
const char *rx_reject_reason_text(RxRejectReason reason);

7
include/html_util.h Normal file
View File

@@ -0,0 +1,7 @@
#pragma once
#include <Arduino.h>
String html_escape(const String &input);
String url_encode_component(const String &input);
bool sanitize_device_id(const String &input, String &out_device_id);

View File

@@ -2,6 +2,7 @@
#include <Arduino.h>
#include "config.h"
#include "data_model.h"
constexpr size_t LORA_MAX_PAYLOAD = 230;
@@ -19,5 +20,9 @@ struct LoraPacket {
void lora_init();
bool lora_send(const LoraPacket &pkt);
bool lora_receive(LoraPacket &pkt, uint32_t timeout_ms);
RxRejectReason lora_get_last_rx_reject_reason();
void lora_idle();
void lora_sleep();
void lora_receive_continuous();
bool lora_receive_window(LoraPacket &pkt, uint32_t timeout_ms);
uint32_t lora_airtime_ms(size_t packet_len);

View File

@@ -5,3 +5,5 @@
void meter_init();
bool meter_read(MeterData &data);
bool meter_poll_frame(const char *&frame, size_t &len);
bool meter_parse_frame(const char *frame, size_t len, MeterData &data);

View File

@@ -5,6 +5,7 @@
void power_sender_init();
void power_receiver_init();
void power_configure_unused_pins_sender();
void read_battery(MeterData &data);
uint8_t battery_percent_from_voltage(float voltage_v);
void light_sleep_ms(uint32_t ms);

View File

@@ -12,6 +12,8 @@ struct WifiMqttConfig {
String mqtt_pass;
String ntp_server_1;
String ntp_server_2;
String web_user;
String web_pass;
bool valid;
};

View File

@@ -18,6 +18,8 @@ lib_deps =
adafruit/Adafruit SSD1306@^2.5.9
adafruit/Adafruit GFX Library@^1.11.9
knolleary/PubSubClient@^2.8
build_flags =
-DSERIAL_DEBUG_MODE_FLAG=1
[env:lilygo-t3-v1-6-1-test]
platform = https://github.com/pioarduino/platform-espressif32/releases/download/51.03.07/platform-espressif32.zip
@@ -30,6 +32,7 @@ lib_deps =
adafruit/Adafruit GFX Library@^1.11.9
knolleary/PubSubClient@^2.8
build_flags =
-DSERIAL_DEBUG_MODE_FLAG=1
-DENABLE_TEST_MODE
[env:lilygo-t3-v1-6-1-868]
@@ -43,6 +46,7 @@ lib_deps =
adafruit/Adafruit GFX Library@^1.11.9
knolleary/PubSubClient@^2.8
build_flags =
-DSERIAL_DEBUG_MODE_FLAG=1
-DLORA_FREQUENCY_HZ=868E6
[env:lilygo-t3-v1-6-1-868-test]
@@ -56,5 +60,62 @@ lib_deps =
adafruit/Adafruit GFX Library@^1.11.9
knolleary/PubSubClient@^2.8
build_flags =
-DSERIAL_DEBUG_MODE_FLAG=1
-DENABLE_TEST_MODE
-DLORA_FREQUENCY_HZ=868E6
[env:lilygo-t3-v1-6-1-payload-test]
platform = https://github.com/pioarduino/platform-espressif32/releases/download/51.03.07/platform-espressif32.zip
board = ttgo-lora32-v1
framework = arduino
lib_deps =
sandeepmistry/LoRa@^0.8.0
bblanchon/ArduinoJson@^6.21.5
adafruit/Adafruit SSD1306@^2.5.9
adafruit/Adafruit GFX Library@^1.11.9
knolleary/PubSubClient@^2.8
build_flags =
-DSERIAL_DEBUG_MODE_FLAG=1
-DPAYLOAD_CODEC_TEST
[env:lilygo-t3-v1-6-1-868-payload-test]
platform = https://github.com/pioarduino/platform-espressif32/releases/download/51.03.07/platform-espressif32.zip
board = ttgo-lora32-v1
framework = arduino
lib_deps =
sandeepmistry/LoRa@^0.8.0
bblanchon/ArduinoJson@^6.21.5
adafruit/Adafruit SSD1306@^2.5.9
adafruit/Adafruit GFX Library@^1.11.9
knolleary/PubSubClient@^2.8
build_flags =
-DSERIAL_DEBUG_MODE_FLAG=1
-DPAYLOAD_CODEC_TEST
-DLORA_FREQUENCY_HZ=868E6
[env:lilygo-t3-v1-6-1-prod]
platform = https://github.com/pioarduino/platform-espressif32/releases/download/51.03.07/platform-espressif32.zip
board = ttgo-lora32-v1
framework = arduino
lib_deps =
sandeepmistry/LoRa@^0.8.0
bblanchon/ArduinoJson@^6.21.5
adafruit/Adafruit SSD1306@^2.5.9
adafruit/Adafruit GFX Library@^1.11.9
knolleary/PubSubClient@^2.8
build_flags =
-DSERIAL_DEBUG_MODE_FLAG=0
[env:lilygo-t3-v1-6-1-868-prod]
platform = https://github.com/pioarduino/platform-espressif32/releases/download/51.03.07/platform-espressif32.zip
board = ttgo-lora32-v1
framework = arduino
lib_deps =
sandeepmistry/LoRa@^0.8.0
bblanchon/ArduinoJson@^6.21.5
adafruit/Adafruit SSD1306@^2.5.9
adafruit/Adafruit GFX Library@^1.11.9
knolleary/PubSubClient@^2.8
build_flags =
-DSERIAL_DEBUG_MODE_FLAG=0
-DLORA_FREQUENCY_HZ=868E6

View File

@@ -2,5 +2,5 @@
DeviceRole detect_role() {
pinMode(PIN_ROLE, INPUT_PULLDOWN);
return digitalRead(PIN_ROLE) == HIGH ? DeviceRole::Receiver : DeviceRole::Sender;
return digitalRead(PIN_ROLE) == HIGH ? DeviceRole::Sender : DeviceRole::Receiver;
}

View File

@@ -8,3 +8,24 @@ void init_device_ids(uint16_t &short_id, char *device_id, size_t device_id_len)
short_id = (static_cast<uint16_t>(mac[4]) << 8) | mac[5];
snprintf(device_id, device_id_len, "dd3-%04X", short_id);
}
const char *rx_reject_reason_text(RxRejectReason reason) {
switch (reason) {
case RxRejectReason::CrcFail:
return "crc_fail";
case RxRejectReason::BadProtocol:
return "bad_protocol_version";
case RxRejectReason::WrongRole:
return "wrong_role";
case RxRejectReason::WrongPayloadType:
return "wrong_payload_type";
case RxRejectReason::LengthMismatch:
return "length_mismatch";
case RxRejectReason::DeviceIdMismatch:
return "device_id_mismatch";
case RxRejectReason::BatchIdMismatch:
return "batch_id_mismatch";
default:
return "none";
}
}

View File

@@ -36,10 +36,9 @@ static bool g_mqtt_ok = false;
static bool g_oled_on = true;
static bool g_prev_ctrl_high = false;
static uint32_t g_oled_off_start = 0;
static uint32_t g_last_page_ms = 0;
static uint8_t g_page = 0;
static uint32_t g_boot_ms = 0;
static uint32_t g_last_activity_ms = 0;
static bool g_display_ready = false;
static uint32_t g_last_init_attempt_ms = 0;
static bool g_last_oled_on = true;
@@ -69,7 +68,9 @@ void display_power_down() {
}
void display_init() {
if (g_role == DeviceRole::Sender) {
pinMode(PIN_OLED_CTRL, INPUT_PULLDOWN);
}
Wire.begin(PIN_OLED_SDA, PIN_OLED_SCL);
Wire.setClock(100000);
g_display_ready = display.begin(SSD1306_SWITCHCAPVCC, OLED_I2C_ADDR);
@@ -81,7 +82,7 @@ void display_init() {
display.display();
}
g_last_init_attempt_ms = millis();
g_boot_ms = millis();
g_last_activity_ms = millis();
}
void display_set_role(DeviceRole role) {
@@ -171,6 +172,8 @@ static bool render_last_error_line(uint8_t y) {
label = "decode";
} else if (g_last_error == FaultType::LoraTx) {
label = "lora";
} else if (g_last_error == FaultType::TimeSync) {
label = "timesync";
}
display.setCursor(0, y);
display.printf("Err: %s %lus", label, static_cast<unsigned long>(age_seconds(g_last_error_ts, g_last_error_ms)));
@@ -268,16 +271,10 @@ static void render_receiver_status() {
display.printf("Time: %s", time_buf);
uint32_t latest = 0;
bool link_valid = false;
int16_t link_rssi = 0;
float link_snr = 0.0f;
if (g_statuses) {
for (uint8_t i = 0; i < g_status_count; ++i) {
if (g_statuses[i].has_data && g_statuses[i].last_update_ts_utc > latest) {
latest = g_statuses[i].last_update_ts_utc;
link_valid = g_statuses[i].last_data.link_valid;
link_rssi = g_statuses[i].last_data.link_rssi_dbm;
link_snr = g_statuses[i].last_data.link_snr_db;
}
}
}
@@ -291,9 +288,6 @@ static void render_receiver_status() {
localtime_r(&t, &timeinfo);
display.printf("Upd %02d:%02d", timeinfo.tm_hour, timeinfo.tm_min);
}
if (link_valid) {
display.printf(" R:%d S:%.1f", link_rssi, link_snr);
}
render_last_error_line(56);
display.display();
@@ -343,14 +337,27 @@ static void render_receiver_sender(uint8_t index) {
display.setCursor(0, 12);
display.printf("E %.1f kWh", status.last_data.energy_total_kwh);
display.setCursor(0, 24);
display.printf("P %.0fW", status.last_data.total_power_w);
display.setCursor(0, 36);
display.setCursor(0, 22);
display.printf("L1 %.0fW", status.last_data.phase_power_w[0]);
display.setCursor(0, 48);
display.setCursor(0, 32);
display.printf("L2 %.0fW", status.last_data.phase_power_w[1]);
display.setCursor(0, 56);
display.setCursor(0, 42);
display.printf("L3 %.0fW", status.last_data.phase_power_w[2]);
display.setCursor(0, 52);
display.print("P");
char p_buf[16];
snprintf(p_buf, sizeof(p_buf), "%.0fW", status.last_data.total_power_w);
int16_t x1 = 0;
int16_t y1 = 0;
uint16_t w = 0;
uint16_t h = 0;
display.getTextBounds(p_buf, 0, 0, &x1, &y1, &w, &h);
int16_t x = static_cast<int16_t>(display.width() - w);
if (x < 0) {
x = 0;
}
display.setCursor(x, 52);
display.print(p_buf);
display.display();
}
@@ -369,29 +376,21 @@ void display_tick() {
}
return;
}
bool ctrl_high = digitalRead(PIN_OLED_CTRL) == HIGH;
bool ctrl_high = false;
if (g_role == DeviceRole::Sender) {
ctrl_high = digitalRead(PIN_OLED_CTRL) == HIGH;
}
bool in_boot_window = (millis() - g_boot_ms) < OLED_AUTO_OFF_MS;
uint32_t now_ms = millis();
bool ctrl_falling_edge = g_prev_ctrl_high && !ctrl_high;
if (g_role == DeviceRole::Receiver) {
g_oled_on = true;
g_oled_off_start = 0;
} else if (in_boot_window) {
g_oled_on = true;
g_last_activity_ms = now_ms;
} else {
if (ctrl_high) {
g_oled_on = true;
g_oled_off_start = 0;
} else if (g_prev_ctrl_high && !ctrl_high) {
g_oled_off_start = millis();
} else if (!g_prev_ctrl_high && !ctrl_high && g_oled_off_start == 0) {
g_oled_off_start = millis();
if (ctrl_high || ctrl_falling_edge) {
g_last_activity_ms = now_ms;
}
if (!ctrl_high && g_oled_off_start > 0 && millis() - g_oled_off_start > OLED_AUTO_OFF_MS) {
g_oled_on = false;
}
// fall through to power gating below
g_oled_on = (now_ms - g_last_activity_ms) < OLED_AUTO_OFF_MS;
}
if (g_oled_on) {

98
src/html_util.cpp Normal file
View File

@@ -0,0 +1,98 @@
#include "html_util.h"
String html_escape(const String &input) {
String out;
out.reserve(input.length() + 8);
for (size_t i = 0; i < input.length(); ++i) {
char c = input[i];
switch (c) {
case '&':
out += "&amp;";
break;
case '<':
out += "&lt;";
break;
case '>':
out += "&gt;";
break;
case '"':
out += "&quot;";
break;
case '\'':
out += "&#39;";
break;
default:
out += c;
break;
}
}
return out;
}
String url_encode_component(const String &input) {
String out;
out.reserve(input.length() * 3);
const char *hex = "0123456789ABCDEF";
for (size_t i = 0; i < input.length(); ++i) {
unsigned char c = static_cast<unsigned char>(input[i]);
bool safe = (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') ||
(c >= '0' && c <= '9') || c == '-' || c == '_' || c == '.' || c == '~';
if (safe) {
out += static_cast<char>(c);
} else {
out += '%';
out += hex[(c >> 4) & 0x0F];
out += hex[c & 0x0F];
}
}
return out;
}
static bool is_hex_char(char c) {
return (c >= '0' && c <= '9') ||
(c >= 'a' && c <= 'f') ||
(c >= 'A' && c <= 'F');
}
static String to_upper_hex4(const String &input) {
String out = input;
out.toUpperCase();
return out;
}
bool sanitize_device_id(const String &input, String &out_device_id) {
String trimmed = input;
trimmed.trim();
if (trimmed.length() == 0) {
return false;
}
if (trimmed.indexOf('/') >= 0 || trimmed.indexOf('\\') >= 0 || trimmed.indexOf("..") >= 0) {
return false;
}
if (trimmed.indexOf('%') >= 0) {
return false;
}
if (trimmed.length() == 4) {
for (size_t i = 0; i < 4; ++i) {
if (!is_hex_char(trimmed[i])) {
return false;
}
}
out_device_id = String("dd3-") + to_upper_hex4(trimmed);
return true;
}
if (trimmed.length() == 8 && trimmed.startsWith("dd3-")) {
String hex = trimmed.substring(4);
for (size_t i = 0; i < 4; ++i) {
if (!is_hex_char(hex[i])) {
return false;
}
}
out_device_id = String("dd3-") + to_upper_hex4(hex);
return true;
}
return false;
}

View File

@@ -118,9 +118,9 @@ bool meterDataToJson(const MeterData &data, String &out_json) {
if (data.err_lora_tx > 0) {
doc["err_tx"] = data.err_lora_tx;
}
if (data.last_error != FaultType::None) {
doc["err_last"] = static_cast<uint8_t>(data.last_error);
}
doc["rx_reject"] = data.rx_reject_reason;
doc["rx_reject_text"] = rx_reject_reason_text(static_cast<RxRejectReason>(data.rx_reject_reason));
out_json = "";
size_t len = serializeJson(doc, out_json);
@@ -162,6 +162,7 @@ bool jsonToMeterData(const String &json, MeterData &data) {
data.err_decode = doc["err_d"] | 0;
data.err_lora_tx = doc["err_tx"] | 0;
data.last_error = static_cast<FaultType>(doc["err_last"] | 0);
data.rx_reject_reason = static_cast<uint8_t>(doc["rx_reject"] | 0);
if (strlen(data.device_id) >= 8) {
const char *suffix = data.device_id + strlen(data.device_id) - 4;
@@ -196,9 +197,7 @@ bool meterBatchToJson(const MeterData *samples, size_t count, uint16_t batch_id,
doc["err_tx"] = faults->lora_tx_fail;
}
}
if (last_error != FaultType::None) {
doc["err_last"] = static_cast<uint8_t>(last_error);
}
if (!isnan(samples[count - 1].battery_voltage_v)) {
char bat_buf[16];
format_float_2(bat_buf, sizeof(bat_buf), samples[count - 1].battery_voltage_v);

View File

@@ -3,6 +3,26 @@
#include <SPI.h>
#include <math.h>
static RxRejectReason g_last_rx_reject_reason = RxRejectReason::None;
static uint32_t g_last_rx_reject_log_ms = 0;
static void note_reject(RxRejectReason reason) {
g_last_rx_reject_reason = reason;
if (SERIAL_DEBUG_MODE) {
uint32_t now_ms = millis();
if (now_ms - g_last_rx_reject_log_ms >= 1000) {
g_last_rx_reject_log_ms = now_ms;
Serial.printf("lora_rx: reject reason=%s\n", rx_reject_reason_text(reason));
}
}
}
RxRejectReason lora_get_last_rx_reject_reason() {
RxRejectReason reason = g_last_rx_reject_reason;
g_last_rx_reject_reason = RxRejectReason::None;
return reason;
}
static uint16_t crc16_ccitt(const uint8_t *data, size_t len) {
uint16_t crc = 0xFFFF;
for (size_t i = 0; i < len; ++i) {
@@ -33,6 +53,18 @@ bool lora_send(const LoraPacket &pkt) {
if (LORA_SEND_BYPASS) {
return true;
}
uint32_t t0 = 0;
uint32_t t1 = 0;
uint32_t t2 = 0;
uint32_t t3 = 0;
uint32_t t4 = 0;
if (SERIAL_DEBUG_MODE) {
t0 = millis();
}
LoRa.idle();
if (SERIAL_DEBUG_MODE) {
t1 = millis();
}
uint8_t buffer[5 + LORA_MAX_PAYLOAD + 2];
size_t idx = 0;
buffer[idx++] = pkt.protocol_version;
@@ -53,8 +85,24 @@ bool lora_send(const LoraPacket &pkt) {
buffer[idx++] = static_cast<uint8_t>(crc & 0xFF);
LoRa.beginPacket();
if (SERIAL_DEBUG_MODE) {
t2 = millis();
}
LoRa.write(buffer, idx);
int result = LoRa.endPacket();
if (SERIAL_DEBUG_MODE) {
t3 = millis();
}
int result = LoRa.endPacket(false);
if (SERIAL_DEBUG_MODE) {
t4 = millis();
Serial.printf("lora_tx: idle=%lums begin=%lums write=%lums end=%lums total=%lums len=%u\n",
static_cast<unsigned long>(t1 - t0),
static_cast<unsigned long>(t2 - t1),
static_cast<unsigned long>(t3 - t2),
static_cast<unsigned long>(t4 - t3),
static_cast<unsigned long>(t4 - t0),
static_cast<unsigned>(idx));
}
return result == 1;
}
@@ -67,6 +115,7 @@ bool lora_receive(LoraPacket &pkt, uint32_t timeout_ms) {
while (LoRa.available()) {
LoRa.read();
}
note_reject(RxRejectReason::LengthMismatch);
return false;
}
@@ -77,12 +126,18 @@ bool lora_receive(LoraPacket &pkt, uint32_t timeout_ms) {
}
if (len < 7) {
note_reject(RxRejectReason::LengthMismatch);
return false;
}
uint16_t crc_calc = crc16_ccitt(buffer, len - 2);
uint16_t crc_rx = static_cast<uint16_t>(buffer[len - 2] << 8) | buffer[len - 1];
if (crc_calc != crc_rx) {
note_reject(RxRejectReason::CrcFail);
return false;
}
if (buffer[0] != PROTOCOL_VERSION) {
note_reject(RxRejectReason::BadProtocol);
return false;
}
@@ -92,6 +147,7 @@ bool lora_receive(LoraPacket &pkt, uint32_t timeout_ms) {
pkt.payload_type = static_cast<PayloadType>(buffer[4]);
pkt.payload_len = len - 7;
if (pkt.payload_len > LORA_MAX_PAYLOAD) {
note_reject(RxRejectReason::LengthMismatch);
return false;
}
memcpy(pkt.payload, &buffer[5], pkt.payload_len);
@@ -107,10 +163,28 @@ bool lora_receive(LoraPacket &pkt, uint32_t timeout_ms) {
}
}
void lora_idle() {
LoRa.idle();
}
void lora_sleep() {
LoRa.sleep();
}
void lora_receive_continuous() {
LoRa.receive();
}
bool lora_receive_window(LoraPacket &pkt, uint32_t timeout_ms) {
if (timeout_ms == 0) {
return false;
}
LoRa.receive();
bool got = lora_receive(pkt, timeout_ms);
LoRa.sleep();
return got;
}
uint32_t lora_airtime_ms(size_t packet_len) {
if (packet_len == 0) {
return 0;

View File

@@ -2,6 +2,7 @@
#include "config.h"
#include "data_model.h"
#include "json_codec.h"
#include "payload_codec.h"
#include "compressor.h"
#include "lora_transport.h"
#include "meter_driver.h"
@@ -12,8 +13,9 @@
#include "web_server.h"
#include "display_ui.h"
#include "test_mode.h"
#include <ArduinoJson.h>
#include "sd_logger.h"
#include <stdarg.h>
#include <math.h>
#ifdef ARDUINO_ARCH_ESP32
#include <esp_task_wdt.h>
#include <esp_system.h>
@@ -48,10 +50,21 @@ static uint32_t g_sender_last_error_remote_ms[NUM_SENDERS] = {};
static bool g_sender_discovery_sent[NUM_SENDERS] = {};
static bool g_receiver_discovery_sent = false;
struct TimeSyncBurstState {
bool active;
uint32_t start_ms;
uint32_t last_send_ms;
uint32_t last_drift_check_ms;
bool last_drift_ok;
};
static TimeSyncBurstState g_timesync_burst[NUM_SENDERS] = {};
static uint32_t g_sender_last_timesync_rx_ms = 0;
static bool g_sender_timesync_error = false;
static constexpr size_t BATCH_HEADER_SIZE = 6;
static constexpr size_t BATCH_CHUNK_PAYLOAD = LORA_MAX_PAYLOAD - BATCH_HEADER_SIZE;
static constexpr size_t BATCH_MAX_COMPRESSED = 4096;
static constexpr size_t BATCH_MAX_DECOMPRESSED = 8192;
static constexpr uint32_t BATCH_RX_MARGIN_MS = 800;
struct BatchBuffer {
@@ -87,6 +100,20 @@ static uint8_t g_inflight_count = 0;
static uint16_t g_inflight_batch_id = 0;
static bool g_inflight_active = false;
static uint32_t g_last_debug_log_ms = 0;
static uint32_t g_sender_last_timesync_check_ms = 0;
static uint32_t g_sender_rx_window_ms = 0;
static uint32_t g_sender_sleep_ms = 0;
static uint32_t g_sender_power_log_ms = 0;
static uint8_t g_sender_timesync_mode = 0;
static RxRejectReason g_sender_rx_reject_reason = RxRejectReason::None;
static uint32_t g_sender_rx_reject_log_ms = 0;
static MeterData g_last_meter_data = {};
static bool g_last_meter_valid = false;
static uint32_t g_last_meter_rx_ms = 0;
static uint32_t g_meter_stale_seconds = 0;
static constexpr uint32_t SENDER_TIMESYNC_ACQUIRE_MS = 10UL * 60UL * 1000UL;
static constexpr uint32_t SENDER_TIMESYNC_ACQUIRE_INTERVAL_SEC = 20;
static constexpr uint32_t SENDER_TIMESYNC_ACQUIRE_WINDOW_MS = 3000;
static void watchdog_kick();
@@ -102,23 +129,15 @@ static void serial_debug_printf(const char *fmt, ...) {
Serial.println(buf);
}
static void serial_debug_print_json(const String &json) {
if (!SERIAL_DEBUG_MODE || !SERIAL_DEBUG_DUMP_JSON) {
static void sender_set_timesync_mode(uint8_t mode) {
if (g_sender_timesync_mode == mode) {
return;
}
const char *data = json.c_str();
size_t len = json.length();
const size_t chunk = 128;
for (size_t i = 0; i < len; i += chunk) {
size_t n = len - i;
if (n > chunk) {
n = chunk;
g_sender_timesync_mode = mode;
if (SERIAL_DEBUG_MODE) {
const char *label = mode == 2 ? "acquire" : (mode == 1 ? "slow" : "fast");
serial_debug_printf("timesync: mode=%s", label);
}
Serial.write(reinterpret_cast<const uint8_t *>(data + i), n);
watchdog_kick();
delay(0);
}
Serial.write('\n');
}
static uint16_t g_last_batch_id_rx[NUM_SENDERS] = {};
@@ -162,6 +181,41 @@ static void update_battery_cache() {
g_last_battery_ms = millis();
}
static bool battery_sample_due(uint32_t now_ms) {
return g_last_battery_ms == 0 || now_ms - g_last_battery_ms >= BATTERY_SAMPLE_INTERVAL_MS;
}
static bool sender_timesync_window_due() {
uint32_t interval_sec = SENDER_TIMESYNC_CHECK_SEC_FAST;
bool in_acquire = (g_sender_last_timesync_rx_ms == 0) && (millis() - g_boot_ms < SENDER_TIMESYNC_ACQUIRE_MS);
bool allow_slow = (millis() - g_boot_ms >= 60000UL) && time_is_synced() && time_rtc_present() &&
(g_sender_last_timesync_rx_ms > 0);
// RTC boot time is not evidence of receiving network TimeSync.
if (in_acquire) {
interval_sec = SENDER_TIMESYNC_ACQUIRE_INTERVAL_SEC;
sender_set_timesync_mode(2);
} else if (allow_slow) {
interval_sec = SENDER_TIMESYNC_CHECK_SEC_SLOW;
sender_set_timesync_mode(1);
} else {
sender_set_timesync_mode(0);
}
static uint32_t last_interval_sec = 0;
if (last_interval_sec != interval_sec) {
last_interval_sec = interval_sec;
g_sender_last_timesync_check_ms = millis();
}
if (g_sender_last_timesync_check_ms == 0) {
g_sender_last_timesync_check_ms = millis() - interval_sec * 1000UL;
}
uint32_t now_ms = millis();
if (now_ms - g_sender_last_timesync_check_ms >= interval_sec * 1000UL) {
g_sender_last_timesync_check_ms = now_ms;
return true;
}
return false;
}
static bool batch_queue_drop_oldest() {
if (g_batch_count == 0) {
return false;
@@ -180,6 +234,39 @@ static bool batch_queue_drop_oldest() {
return dropped_inflight;
}
static void receiver_note_timesync_drift(uint8_t sender_idx, uint32_t sender_ts_utc) {
if (sender_idx >= NUM_SENDERS) {
return;
}
if (!time_is_synced() || sender_ts_utc == 0) {
return;
}
uint32_t now_utc = time_get_utc();
uint32_t diff = now_utc > sender_ts_utc ? now_utc - sender_ts_utc : sender_ts_utc - now_utc;
TimeSyncBurstState &state = g_timesync_burst[sender_idx];
state.last_drift_check_ms = millis();
state.last_drift_ok = diff <= TIME_SYNC_DRIFT_THRESHOLD_SEC;
if (!state.last_drift_ok) {
if (!state.active) {
state.active = true;
state.start_ms = millis();
state.last_send_ms = 0;
}
}
}
static void sender_note_rx_reject(RxRejectReason reason, const char *context) {
if (reason == RxRejectReason::None) {
return;
}
g_sender_rx_reject_reason = reason;
uint32_t now_ms = millis();
if (SERIAL_DEBUG_MODE && now_ms - g_sender_rx_reject_log_ms >= 1000) {
g_sender_rx_reject_log_ms = now_ms;
serial_debug_printf("rx_reject: %s reason=%s", context, rx_reject_reason_text(reason));
}
}
static BatchBuffer *batch_queue_peek() {
if (g_batch_count == 0) {
return nullptr;
@@ -283,6 +370,63 @@ static uint16_t read_u16_le(const uint8_t *src) {
return static_cast<uint16_t>(src[0]) | (static_cast<uint16_t>(src[1]) << 8);
}
static uint16_t sender_id_from_short_id(uint16_t short_id) {
for (uint8_t i = 0; i < NUM_SENDERS; ++i) {
if (EXPECTED_SENDER_IDS[i] == short_id) {
return static_cast<uint16_t>(i + 1);
}
}
return 0;
}
static uint16_t short_id_from_sender_id(uint16_t sender_id) {
if (sender_id == 0 || sender_id > NUM_SENDERS) {
return 0;
}
return EXPECTED_SENDER_IDS[sender_id - 1];
}
static uint32_t kwh_to_wh_from_float(float value) {
if (isnan(value)) {
return 0;
}
double wh = static_cast<double>(value) * 1000.0;
if (wh < 0.0) {
wh = 0.0;
}
if (wh > static_cast<double>(UINT32_MAX)) {
wh = static_cast<double>(UINT32_MAX);
}
return static_cast<uint32_t>(llround(wh));
}
static bool float_to_i16_w(float value, int16_t &out) {
if (isnan(value)) {
out = 0;
return true;
}
long rounded = lroundf(value);
if (rounded < INT16_MIN || rounded > INT16_MAX) {
return false;
}
out = static_cast<int16_t>(rounded);
return true;
}
static uint16_t battery_mv_from_voltage(float value) {
if (isnan(value) || value <= 0.0f) {
return 0;
}
long mv = lroundf(value * 1000.0f);
if (mv < 0) {
mv = 0;
}
if (mv > UINT16_MAX) {
mv = UINT16_MAX;
}
return static_cast<uint16_t>(mv);
}
static uint32_t compute_batch_rx_timeout_ms(uint16_t total_len, uint8_t chunk_count) {
if (total_len == 0 || chunk_count == 0) {
return 10000;
@@ -306,22 +450,6 @@ static uint32_t compute_batch_ack_timeout_ms(size_t payload_len) {
return timeout_ms < 10000 ? 10000 : timeout_ms;
}
static bool inject_batch_meta(String &json, int16_t rssi_dbm, float snr_db, uint32_t rx_ts_utc) {
DynamicJsonDocument doc(8192);
DeserializationError err = deserializeJson(doc, json);
if (err) {
return false;
}
JsonObject meta = doc.createNestedObject("meta");
meta["rssi"] = rssi_dbm;
meta["snr"] = snr_db;
meta["rx_ts"] = rx_ts_utc;
json = "";
return serializeJson(doc, json) > 0;
}
static bool send_batch_payload(const uint8_t *data, size_t len, uint32_t ts_for_display, uint16_t batch_id) {
if (!data || len == 0 || len > BATCH_MAX_COMPRESSED) {
return false;
@@ -383,7 +511,18 @@ static void send_batch_ack(uint16_t batch_id, uint16_t sender_id) {
write_u16_le(&ack.payload[0], batch_id);
write_u16_le(&ack.payload[2], sender_id);
write_u16_le(&ack.payload[4], g_short_id);
uint8_t repeats = ACK_REPEAT_COUNT == 0 ? 1 : ACK_REPEAT_COUNT;
for (uint8_t i = 0; i < repeats; ++i) {
if (SERIAL_DEBUG_MODE) {
serial_debug_printf("ack: tx repeat %u/%u batch_id=%u", static_cast<unsigned>(i + 1),
static_cast<unsigned>(repeats), batch_id);
}
lora_send(ack);
if (i + 1 < repeats && ACK_REPEAT_DELAY_MS > 0) {
delay(ACK_REPEAT_DELAY_MS);
}
}
lora_receive_continuous();
}
static bool prepare_inflight_from_queue() {
@@ -411,41 +550,53 @@ static bool send_inflight_batch(uint32_t ts_for_display) {
if (!g_inflight_active || g_inflight_count == 0) {
return false;
}
uint32_t json_start = millis();
String json;
if (!meterBatchToJson(g_inflight_samples, g_inflight_count, g_inflight_batch_id, json, &g_sender_faults, g_sender_last_error)) {
BatchInput input = {};
input.sender_id = sender_id_from_short_id(g_short_id);
input.batch_id = g_inflight_batch_id;
input.t_last = g_inflight_samples[g_inflight_count - 1].ts_utc;
uint32_t dt_s = METER_SAMPLE_INTERVAL_MS / 1000;
input.dt_s = dt_s > 0 ? static_cast<uint8_t>(dt_s) : 1;
input.n = g_inflight_count;
input.battery_mV = battery_mv_from_voltage(g_inflight_samples[g_inflight_count - 1].battery_voltage_v);
input.err_m = g_sender_faults.meter_read_fail > 255 ? 255 : static_cast<uint8_t>(g_sender_faults.meter_read_fail);
input.err_d = g_sender_faults.decode_fail > 255 ? 255 : static_cast<uint8_t>(g_sender_faults.decode_fail);
input.err_tx = g_sender_faults.lora_tx_fail > 255 ? 255 : static_cast<uint8_t>(g_sender_faults.lora_tx_fail);
input.err_last = static_cast<uint8_t>(g_sender_last_error);
input.err_rx_reject = static_cast<uint8_t>(g_sender_rx_reject_reason);
for (uint8_t i = 0; i < g_inflight_count; ++i) {
input.energy_wh[i] = kwh_to_wh_from_float(g_inflight_samples[i].energy_total_kwh);
if (!float_to_i16_w(g_inflight_samples[i].phase_power_w[0], input.p1_w[i]) ||
!float_to_i16_w(g_inflight_samples[i].phase_power_w[1], input.p2_w[i]) ||
!float_to_i16_w(g_inflight_samples[i].phase_power_w[2], input.p3_w[i])) {
return false;
}
uint32_t json_ms = millis() - json_start;
if (SERIAL_DEBUG_MODE) {
serial_debug_printf("tx: batch_id=%u count=%u json_len=%u", g_inflight_batch_id, g_inflight_count, static_cast<unsigned>(json.length()));
if (json_ms > 200) {
serial_debug_printf("tx: json encode took %lums", static_cast<unsigned long>(json_ms));
}
serial_debug_print_json(json);
}
static uint8_t compressed[BATCH_MAX_COMPRESSED];
size_t compressed_len = 0;
uint32_t compress_start = millis();
if (!compressBuffer(reinterpret_cast<const uint8_t *>(json.c_str()), json.length(), compressed, sizeof(compressed), compressed_len)) {
static uint8_t encoded[BATCH_MAX_COMPRESSED];
size_t encoded_len = 0;
uint32_t encode_start = millis();
if (!encode_batch(input, encoded, sizeof(encoded), &encoded_len)) {
return false;
}
uint32_t compress_ms = millis() - compress_start;
if (SERIAL_DEBUG_MODE && compress_ms > 200) {
serial_debug_printf("tx: compress took %lums", static_cast<unsigned long>(compress_ms));
uint32_t encode_ms = millis() - encode_start;
if (SERIAL_DEBUG_MODE) {
serial_debug_printf("tx: batch_id=%u count=%u bin_len=%u", g_inflight_batch_id, g_inflight_count,
static_cast<unsigned>(encoded_len));
if (encode_ms > 200) {
serial_debug_printf("tx: encode took %lums", static_cast<unsigned long>(encode_ms));
}
g_batch_ack_timeout_ms = compute_batch_ack_timeout_ms(compressed_len);
}
g_batch_ack_timeout_ms = compute_batch_ack_timeout_ms(encoded_len);
uint32_t send_start = millis();
bool ok = send_batch_payload(compressed, compressed_len, ts_for_display, g_inflight_batch_id);
bool ok = send_batch_payload(encoded, encoded_len, ts_for_display, g_inflight_batch_id);
uint32_t send_ms = millis() - send_start;
if (SERIAL_DEBUG_MODE && send_ms > 1000) {
serial_debug_printf("tx: send batch took %lums", static_cast<unsigned long>(send_ms));
}
if (ok) {
g_last_batch_send_ms = millis();
serial_debug_printf("tx: sent batch_id=%u len=%u", g_inflight_batch_id, static_cast<unsigned>(compressed_len));
serial_debug_printf("tx: sent batch_id=%u len=%u", g_inflight_batch_id, static_cast<unsigned>(encoded_len));
} else {
serial_debug_printf("tx: send failed batch_id=%u", g_inflight_batch_id);
}
@@ -498,7 +649,7 @@ static void reset_batch_rx() {
g_batch_rx.timeout_ms = 0;
}
static bool process_batch_packet(const LoraPacket &pkt, String &out_json, bool &decode_error, uint16_t &out_batch_id) {
static bool process_batch_packet(const LoraPacket &pkt, BatchInput &out_batch, bool &decode_error, uint16_t &out_batch_id) {
decode_error = false;
if (pkt.payload_len < BATCH_HEADER_SIZE) {
return false;
@@ -545,20 +696,11 @@ static bool process_batch_packet(const LoraPacket &pkt, String &out_json, bool &
g_batch_rx.last_rx_ms = now_ms;
if (g_batch_rx.next_index == g_batch_rx.expected_chunks && g_batch_rx.received_len == g_batch_rx.total_len) {
static uint8_t decompressed[BATCH_MAX_DECOMPRESSED];
size_t decompressed_len = 0;
if (!decompressBuffer(g_batch_rx.buffer, g_batch_rx.received_len, decompressed, sizeof(decompressed) - 1, decompressed_len)) {
if (!decode_batch(g_batch_rx.buffer, g_batch_rx.received_len, &out_batch)) {
decode_error = true;
reset_batch_rx();
return false;
}
if (decompressed_len >= sizeof(decompressed)) {
decode_error = true;
reset_batch_rx();
return false;
}
decompressed[decompressed_len] = '\0';
out_json = String(reinterpret_cast<const char *>(decompressed));
out_batch_id = batch_id;
reset_batch_rx();
return true;
@@ -570,11 +712,15 @@ static bool process_batch_packet(const LoraPacket &pkt, String &out_json, bool &
void setup() {
Serial.begin(115200);
delay(200);
#ifdef PAYLOAD_CODEC_TEST
payload_codec_self_test();
#endif
watchdog_init();
g_boot_ms = millis();
g_role = detect_role();
init_device_ids(g_short_id, g_device_id, sizeof(g_device_id));
display_set_role(g_role);
if (SERIAL_DEBUG_MODE) {
#ifdef ARDUINO_ARCH_ESP32
serial_debug_printf("boot: reset_reason=%d", static_cast<int>(esp_reset_reason()));
@@ -587,17 +733,20 @@ void setup() {
display_init();
time_rtc_init();
time_try_load_from_rtc();
display_set_role(g_role);
display_set_self_ids(g_short_id, g_device_id);
if (g_role == DeviceRole::Sender) {
power_sender_init();
power_configure_unused_pins_sender();
meter_init();
g_last_sample_ms = millis() - METER_SAMPLE_INTERVAL_MS;
g_last_send_ms = millis();
update_battery_cache();
} else {
power_receiver_init();
lora_receive_continuous();
pinMode(PIN_ROLE, INPUT); // release pulldown before SD uses GPIO14 as SCK
sd_logger_init();
wifi_manager_init();
init_sender_statuses();
display_set_sender_statuses(g_sender_statuses, NUM_SENDERS);
@@ -613,8 +762,8 @@ void setup() {
} else {
g_ap_mode = true;
char ap_ssid[32];
snprintf(ap_ssid, sizeof(ap_ssid), "DD3-Bridge-%04X", g_short_id);
wifi_start_ap(ap_ssid, "changeme123");
snprintf(ap_ssid, sizeof(ap_ssid), "%s%04X", AP_SSID_PREFIX, g_short_id);
wifi_start_ap(ap_ssid, AP_PASSWORD);
if (g_cfg.ntp_server_1.isEmpty()) {
g_cfg.ntp_server_1 = "pool.ntp.org";
}
@@ -645,22 +794,52 @@ static void sender_loop() {
g_batch_retry_count);
}
const char *frame = nullptr;
size_t frame_len = 0;
if (meter_poll_frame(frame, frame_len)) {
MeterData parsed = {};
parsed.energy_total_kwh = NAN;
parsed.total_power_w = NAN;
parsed.phase_power_w[0] = NAN;
parsed.phase_power_w[1] = NAN;
parsed.phase_power_w[2] = NAN;
parsed.valid = false;
if (meter_parse_frame(frame, frame_len, parsed)) {
g_last_meter_data = parsed;
g_last_meter_valid = true;
g_last_meter_rx_ms = now_ms;
g_meter_stale_seconds = 0;
}
}
if (now_ms - g_last_sample_ms >= METER_SAMPLE_INTERVAL_MS) {
g_last_sample_ms = now_ms;
MeterData data = {};
data.short_id = g_short_id;
strncpy(data.device_id, g_device_id, sizeof(data.device_id));
bool meter_ok = meter_read(data);
bool meter_ok = g_last_meter_valid;
if (meter_ok) {
data.energy_total_kwh = g_last_meter_data.energy_total_kwh;
data.total_power_w = g_last_meter_data.total_power_w;
data.phase_power_w[0] = g_last_meter_data.phase_power_w[0];
data.phase_power_w[1] = g_last_meter_data.phase_power_w[1];
data.phase_power_w[2] = g_last_meter_data.phase_power_w[2];
uint32_t age_ms = now_ms - g_last_meter_rx_ms;
g_meter_stale_seconds = age_ms >= 1000 ? (age_ms / 1000) : 0;
} else {
g_meter_stale_seconds++;
}
if (!meter_ok) {
note_fault(g_sender_faults, g_sender_last_error, g_sender_last_error_utc, g_sender_last_error_ms, FaultType::MeterRead);
display_set_last_error(g_sender_last_error, g_sender_last_error_utc, g_sender_last_error_ms);
}
if (g_build_count == 0) {
if (g_build_count == 0 && battery_sample_due(now_ms)) {
update_battery_cache();
}
data.battery_voltage_v = g_last_battery_voltage_v;
data.battery_percent = g_last_battery_percent;
data.rx_reject_reason = static_cast<uint8_t>(g_sender_rx_reject_reason);
uint32_t now_utc = time_get_utc();
data.ts_utc = now_utc > 0 ? now_utc : millis() / 1000;
@@ -682,44 +861,102 @@ static void sender_loop() {
}
if (g_batch_ack_pending) {
uint32_t end_ms = millis() + 400;
while (millis() < end_ms) {
LoraPacket ack_pkt = {};
if (!lora_receive(ack_pkt, 0) || ack_pkt.protocol_version != PROTOCOL_VERSION) {
delay(5);
continue;
const uint32_t ack_len = 5 + 6 + 2;
uint32_t ack_air_ms = lora_airtime_ms(ack_len);
uint32_t ack_window_ms = ack_air_ms + 300;
if (ack_window_ms < 1200) {
ack_window_ms = 1200;
}
if (ack_pkt.payload_type == PayloadType::Ack && ack_pkt.payload_len >= 6 && ack_pkt.role == DeviceRole::Receiver) {
if (ack_window_ms > 4000) {
ack_window_ms = 4000;
}
if (SERIAL_DEBUG_MODE) {
serial_debug_printf("ack: rx window=%lu airtime=%lu", static_cast<unsigned long>(ack_window_ms),
static_cast<unsigned long>(ack_air_ms));
}
uint32_t rx_start = millis();
bool got_ack = lora_receive_window(ack_pkt, ack_window_ms);
if (!got_ack) {
got_ack = lora_receive_window(ack_pkt, ack_window_ms / 2);
}
uint32_t rx_elapsed = millis() - rx_start;
if (SERIAL_DEBUG_MODE) {
g_sender_rx_window_ms += rx_elapsed;
}
if (!got_ack) {
sender_note_rx_reject(lora_get_last_rx_reject_reason(), "ack");
} else if (ack_pkt.role != DeviceRole::Receiver) {
sender_note_rx_reject(RxRejectReason::WrongRole, "ack");
} else if (ack_pkt.payload_type != PayloadType::Ack) {
sender_note_rx_reject(RxRejectReason::WrongPayloadType, "ack");
} else if (ack_pkt.payload_len < 6) {
sender_note_rx_reject(RxRejectReason::LengthMismatch, "ack");
} else {
uint16_t ack_id = read_u16_le(ack_pkt.payload);
uint16_t ack_sender = read_u16_le(&ack_pkt.payload[2]);
uint16_t ack_receiver = read_u16_le(&ack_pkt.payload[4]);
if (ack_sender == g_short_id && ack_receiver == ack_pkt.device_id_short &&
g_batch_ack_pending && ack_id == g_last_sent_batch_id) {
g_last_acked_batch_id = ack_id;
serial_debug_printf("ack: ok batch_id=%u", ack_id);
serial_debug_printf("ack: rx ok batch_id=%u", ack_id);
finish_inflight_batch();
break;
} else {
if (ack_sender != g_short_id || ack_receiver != ack_pkt.device_id_short) {
sender_note_rx_reject(RxRejectReason::DeviceIdMismatch, "ack");
} else if (ack_id != g_last_sent_batch_id) {
sender_note_rx_reject(RxRejectReason::BatchIdMismatch, "ack");
}
if (SERIAL_DEBUG_MODE) {
serial_debug_printf("ack: reject batch_id=%u sender=%u receiver=%u exp_batch=%u exp_sender=%u",
ack_id, ack_sender, ack_receiver, g_last_sent_batch_id, g_short_id);
}
}
}
}
bool timesync_due = (!g_batch_ack_pending && sender_timesync_window_due());
if (timesync_due) {
LoraPacket rx = {};
if (lora_receive(rx, 0) && rx.protocol_version == PROTOCOL_VERSION) {
if (rx.payload_type == PayloadType::TimeSync) {
time_handle_timesync_payload(rx.payload, rx.payload_len);
} else if (rx.payload_type == PayloadType::Ack && rx.payload_len >= 6 && rx.role == DeviceRole::Receiver) {
uint16_t ack_id = read_u16_le(rx.payload);
uint16_t ack_sender = read_u16_le(&rx.payload[2]);
uint16_t ack_receiver = read_u16_le(&rx.payload[4]);
if (ack_sender == g_short_id && ack_receiver == rx.device_id_short &&
g_batch_ack_pending && ack_id == g_last_sent_batch_id) {
g_last_acked_batch_id = ack_id;
serial_debug_printf("ack: ok batch_id=%u", ack_id);
finish_inflight_batch();
uint32_t rx_start = millis();
uint32_t window_ms = (g_sender_timesync_mode == 2) ? SENDER_TIMESYNC_ACQUIRE_WINDOW_MS : SENDER_TIMESYNC_WINDOW_MS;
bool got = lora_receive_window(rx, window_ms);
uint32_t rx_elapsed = millis() - rx_start;
if (SERIAL_DEBUG_MODE) {
g_sender_rx_window_ms += rx_elapsed;
}
if (!got) {
sender_note_rx_reject(lora_get_last_rx_reject_reason(), "timesync");
if (SERIAL_DEBUG_MODE) {
serial_debug_printf("timesync: rx miss window_ms=%lu", static_cast<unsigned long>(window_ms));
}
} else if (rx.role != DeviceRole::Receiver) {
sender_note_rx_reject(RxRejectReason::WrongRole, "timesync");
} else if (rx.payload_type != PayloadType::TimeSync) {
sender_note_rx_reject(RxRejectReason::WrongPayloadType, "timesync");
} else if (time_handle_timesync_payload(rx.payload, rx.payload_len)) {
g_sender_last_timesync_rx_ms = now_ms;
if (g_sender_timesync_error) {
g_sender_timesync_error = false;
display_set_last_error(FaultType::None, 0, 0);
}
serial_debug_printf("timesync: rx ok window_ms=%lu", static_cast<unsigned long>(window_ms));
} else {
sender_note_rx_reject(RxRejectReason::LengthMismatch, "timesync");
if (SERIAL_DEBUG_MODE) {
serial_debug_printf("timesync: rx miss window_ms=%lu", static_cast<unsigned long>(window_ms));
}
}
}
uint32_t timesync_age_ms = (g_sender_last_timesync_rx_ms > 0) ? (now_ms - g_sender_last_timesync_rx_ms)
: (now_ms - g_boot_ms);
if (!g_sender_timesync_error && timesync_age_ms > TIME_SYNC_ERROR_TIMEOUT_MS) {
g_sender_timesync_error = true;
display_set_last_error(FaultType::TimeSync, time_get_utc(), now_ms);
}
if (!g_batch_ack_pending) {
lora_sleep();
}
if (g_batch_ack_pending && (now_ms - g_last_batch_send_ms >= g_batch_ack_timeout_ms)) {
if (g_batch_retry_count < BATCH_MAX_RETRIES) {
@@ -750,6 +987,15 @@ static void sender_loop() {
uint32_t next_due = next_sample_due < next_send_due ? next_sample_due : next_send_due;
if (!g_batch_ack_pending && next_due > now_ms) {
watchdog_kick();
if (SERIAL_DEBUG_MODE) {
g_sender_sleep_ms += (next_due - now_ms);
if (now_ms - g_sender_power_log_ms >= 10000) {
g_sender_power_log_ms = now_ms;
serial_debug_printf("power: rx_ms=%lu sleep_ms=%lu", static_cast<unsigned long>(g_sender_rx_window_ms),
static_cast<unsigned long>(g_sender_sleep_ms));
}
}
lora_sleep();
light_sleep_ms(next_due - now_ms);
}
}
@@ -779,6 +1025,7 @@ static void receiver_loop() {
data.link_valid = true;
data.link_rssi_dbm = pkt.rssi_dbm;
data.link_snr_db = pkt.snr_db;
sd_logger_log_sample(data, data.last_error != FaultType::None);
for (uint8_t i = 0; i < NUM_SENDERS; ++i) {
if (pkt.device_id_short == EXPECTED_SENDER_IDS[i]) {
data.short_id = pkt.device_id_short;
@@ -787,6 +1034,7 @@ static void receiver_loop() {
g_sender_statuses[i].has_data = true;
g_sender_faults_remote[i].meter_read_fail = data.err_meter_read;
g_sender_faults_remote[i].lora_tx_fail = data.err_lora_tx;
receiver_note_timesync_drift(i, data.ts_utc);
g_sender_last_error_remote[i] = data.last_error;
g_sender_last_error_remote_utc[i] = time_get_utc();
g_sender_last_error_remote_ms[i] = millis();
@@ -806,15 +1054,10 @@ static void receiver_loop() {
}
}
} else if (pkt.payload_type == PayloadType::MeterBatch) {
String json;
BatchInput batch = {};
bool decode_error = false;
uint16_t batch_id = 0;
if (process_batch_packet(pkt, json, decode_error, batch_id)) {
uint32_t rx_ts_utc = time_get_utc();
if (rx_ts_utc == 0) {
rx_ts_utc = millis() / 1000;
}
inject_batch_meta(json, pkt.rssi_dbm, pkt.snr_db, rx_ts_utc);
if (process_batch_packet(pkt, batch, decode_error, batch_id)) {
MeterData samples[METER_BATCH_MAX_SAMPLES];
size_t count = 0;
int8_t sender_idx = -1;
@@ -827,13 +1070,63 @@ static void receiver_loop() {
bool duplicate = sender_idx >= 0 && g_last_batch_id_rx[sender_idx] == batch_id;
if (duplicate) {
send_batch_ack(batch_id, pkt.device_id_short);
} else if (jsonToMeterBatch(json, samples, METER_BATCH_MAX_SAMPLES, count)) {
} else {
g_last_batch_id_rx[sender_idx] = batch_id;
send_batch_ack(batch_id, pkt.device_id_short);
count = batch.n;
if (count == 0 || count > METER_BATCH_MAX_SAMPLES) {
note_fault(g_receiver_faults, g_receiver_last_error, g_receiver_last_error_utc, g_receiver_last_error_ms, FaultType::Decode);
display_set_last_error(g_receiver_last_error, g_receiver_last_error_utc, g_receiver_last_error_ms);
return;
}
uint16_t short_id = pkt.device_id_short;
if (short_id == 0) {
short_id = short_id_from_sender_id(batch.sender_id);
}
uint64_t span = static_cast<uint64_t>(batch.dt_s) * static_cast<uint64_t>(count - 1);
if (batch.t_last < span) {
note_fault(g_receiver_faults, g_receiver_last_error, g_receiver_last_error_utc, g_receiver_last_error_ms, FaultType::Decode);
display_set_last_error(g_receiver_last_error, g_receiver_last_error_utc, g_receiver_last_error_ms);
return;
}
uint32_t t_first = batch.t_last - static_cast<uint32_t>(span);
float bat_v = batch.battery_mV > 0 ? static_cast<float>(batch.battery_mV) / 1000.0f : NAN;
for (size_t s = 0; s < count; ++s) {
MeterData &data = samples[s];
data = {};
data.short_id = short_id;
if (short_id != 0) {
snprintf(data.device_id, sizeof(data.device_id), "dd3-%04X", short_id);
} else {
snprintf(data.device_id, sizeof(data.device_id), "dd3-0000");
}
data.ts_utc = t_first + static_cast<uint32_t>(s) * batch.dt_s;
data.energy_total_kwh = static_cast<float>(batch.energy_wh[s]) / 1000.0f;
data.phase_power_w[0] = static_cast<float>(batch.p1_w[s]);
data.phase_power_w[1] = static_cast<float>(batch.p2_w[s]);
data.phase_power_w[2] = static_cast<float>(batch.p3_w[s]);
data.total_power_w = data.phase_power_w[0] + data.phase_power_w[1] + data.phase_power_w[2];
data.battery_voltage_v = bat_v;
if (!isnan(bat_v)) {
data.battery_percent = battery_percent_from_voltage(bat_v);
} else {
data.battery_percent = 0;
}
data.valid = true;
data.link_valid = true;
data.link_rssi_dbm = pkt.rssi_dbm;
data.link_snr_db = pkt.snr_db;
data.err_meter_read = batch.err_m;
data.err_decode = batch.err_d;
data.err_lora_tx = batch.err_tx;
data.last_error = static_cast<FaultType>(batch.err_last);
data.rx_reject_reason = batch.err_rx_reject;
sd_logger_log_sample(data, (s + 1 == count) && data.last_error != FaultType::None);
}
if (sender_idx >= 0) {
web_server_set_last_batch(static_cast<uint8_t>(sender_idx), samples, count);
for (size_t s = 0; s < count; ++s) {
samples[s].link_valid = true;
samples[s].link_rssi_dbm = pkt.rssi_dbm;
samples[s].link_snr_db = pkt.snr_db;
samples[s].short_id = pkt.device_id_short;
mqtt_publish_state(samples[s]);
}
@@ -843,6 +1136,7 @@ static void receiver_loop() {
g_sender_statuses[sender_idx].has_data = true;
g_sender_faults_remote[sender_idx].meter_read_fail = samples[count - 1].err_meter_read;
g_sender_faults_remote[sender_idx].lora_tx_fail = samples[count - 1].err_lora_tx;
receiver_note_timesync_drift(static_cast<uint8_t>(sender_idx), samples[count - 1].ts_utc);
g_sender_last_error_remote[sender_idx] = samples[count - 1].last_error;
g_sender_last_error_remote_utc[sender_idx] = time_get_utc();
g_sender_last_error_remote_ms[sender_idx] = millis();
@@ -853,12 +1147,7 @@ static void receiver_loop() {
g_sender_last_error_remote[sender_idx], g_sender_last_error_remote_published[sender_idx],
g_sender_last_error_remote_utc[sender_idx], g_sender_last_error_remote_ms[sender_idx]);
}
g_last_batch_id_rx[sender_idx] = batch_id;
send_batch_ack(batch_id, pkt.device_id_short);
}
} else {
note_fault(g_receiver_faults, g_receiver_last_error, g_receiver_last_error_utc, g_receiver_last_error_ms, FaultType::Decode);
display_set_last_error(g_receiver_last_error, g_receiver_last_error_utc, g_receiver_last_error_ms);
}
} else if (decode_error) {
note_fault(g_receiver_faults, g_receiver_last_error, g_receiver_last_error_utc, g_receiver_last_error_ms, FaultType::Decode);
@@ -868,15 +1157,39 @@ static void receiver_loop() {
}
uint32_t interval_sec = TIME_SYNC_INTERVAL_SEC;
if (time_rtc_present() && millis() - g_boot_ms >= TIME_SYNC_FAST_WINDOW_MS) {
interval_sec = TIME_SYNC_SLOW_INTERVAL_SEC;
uint32_t now_ms = millis();
if (!g_ap_mode) {
bool burst_sent = false;
for (uint8_t i = 0; i < NUM_SENDERS; ++i) {
TimeSyncBurstState &state = g_timesync_burst[i];
if (state.active) {
if (now_ms - state.start_ms >= TIME_SYNC_BURST_DURATION_MS) {
state.active = false;
} else if (state.last_send_ms == 0 || now_ms - state.last_send_ms >= TIME_SYNC_BURST_INTERVAL_MS) {
state.last_send_ms = now_ms;
burst_sent = true;
}
if (!g_ap_mode && millis() - g_last_timesync_ms > interval_sec * 1000UL) {
g_last_timesync_ms = millis();
}
}
if (burst_sent) {
if (!time_send_timesync(g_short_id)) {
note_fault(g_receiver_faults, g_receiver_last_error, g_receiver_last_error_utc, g_receiver_last_error_ms, FaultType::LoraTx);
display_set_last_error(g_receiver_last_error, g_receiver_last_error_utc, g_receiver_last_error_ms);
}
if (SERIAL_DEBUG_MODE) {
serial_debug_printf("timesync: tx burst");
}
g_last_timesync_ms = now_ms;
} else if (now_ms - g_last_timesync_ms > interval_sec * 1000UL) {
g_last_timesync_ms = now_ms;
if (!time_send_timesync(g_short_id)) {
note_fault(g_receiver_faults, g_receiver_last_error, g_receiver_last_error_utc, g_receiver_last_error_ms, FaultType::LoraTx);
display_set_last_error(g_receiver_last_error, g_receiver_last_error_utc, g_receiver_last_error_ms);
}
if (SERIAL_DEBUG_MODE) {
serial_debug_printf("timesync: tx normal");
}
}
}
mqtt_loop();

View File

@@ -4,7 +4,24 @@
#include <stdlib.h>
#include <string.h>
static constexpr uint32_t METER_READ_TIMEOUT_MS = 2000;
static constexpr uint32_t METER_FRAME_TIMEOUT_MS = 1500;
static constexpr size_t METER_FRAME_MAX = 512;
enum class MeterRxState : uint8_t {
WaitStart = 0,
InFrame = 1
};
static MeterRxState g_rx_state = MeterRxState::WaitStart;
static char g_frame_buf[METER_FRAME_MAX + 1];
static size_t g_frame_len = 0;
static uint32_t g_last_rx_ms = 0;
static uint32_t g_bytes_rx = 0;
static uint32_t g_frames_ok = 0;
static uint32_t g_frames_parse_fail = 0;
static uint32_t g_rx_overflow = 0;
static uint32_t g_rx_timeout = 0;
static uint32_t g_last_log_ms = 0;
void meter_init() {
Serial2.begin(9600, SERIAL_7E1, PIN_METER_RX, -1);
@@ -77,11 +94,76 @@ static bool parse_obis_ascii_unit_scale(const char *line, const char *obis, floa
return false;
}
static bool meter_read_ascii(MeterData &data) {
const uint32_t start_ms = millis();
bool in_telegram = false;
bool got_any = false;
static void meter_debug_log() {
if (!SERIAL_DEBUG_MODE) {
return;
}
uint32_t now_ms = millis();
if (now_ms - g_last_log_ms < 60000) {
return;
}
g_last_log_ms = now_ms;
Serial.printf("meter: ok=%lu parse_fail=%lu overflow=%lu timeout=%lu bytes=%lu\n",
static_cast<unsigned long>(g_frames_ok),
static_cast<unsigned long>(g_frames_parse_fail),
static_cast<unsigned long>(g_rx_overflow),
static_cast<unsigned long>(g_rx_timeout),
static_cast<unsigned long>(g_bytes_rx));
}
bool meter_poll_frame(const char *&frame, size_t &len) {
frame = nullptr;
len = 0;
uint32_t now_ms = millis();
if (g_rx_state == MeterRxState::InFrame && (now_ms - g_last_rx_ms > METER_FRAME_TIMEOUT_MS)) {
g_rx_timeout++;
g_rx_state = MeterRxState::WaitStart;
g_frame_len = 0;
}
while (Serial2.available()) {
char c = static_cast<char>(Serial2.read());
g_bytes_rx++;
g_last_rx_ms = now_ms;
if (g_rx_state == MeterRxState::WaitStart) {
if (c == '/') {
g_rx_state = MeterRxState::InFrame;
g_frame_len = 0;
g_frame_buf[g_frame_len++] = c;
}
continue;
}
if (g_frame_len + 1 >= sizeof(g_frame_buf)) {
g_rx_overflow++;
g_rx_state = MeterRxState::WaitStart;
g_frame_len = 0;
continue;
}
g_frame_buf[g_frame_len++] = c;
if (c == '!') {
g_frame_buf[g_frame_len] = '\0';
frame = g_frame_buf;
len = g_frame_len;
g_rx_state = MeterRxState::WaitStart;
g_frame_len = 0;
meter_debug_log();
return true;
}
}
meter_debug_log();
return false;
}
bool meter_parse_frame(const char *frame, size_t len, MeterData &data) {
if (!frame || len == 0) {
return false;
}
bool got_any = false;
bool energy_ok = false;
bool total_p_ok = false;
bool p1_ok = false;
@@ -90,25 +172,34 @@ static bool meter_read_ascii(MeterData &data) {
char line[128];
size_t line_len = 0;
while (millis() - start_ms < METER_READ_TIMEOUT_MS) {
while (Serial2.available()) {
char c = static_cast<char>(Serial2.read());
if (!in_telegram) {
if (c == '/') {
in_telegram = true;
line_len = 0;
line[line_len++] = c;
}
continue;
}
for (size_t i = 0; i < len; ++i) {
char c = frame[i];
if (c == '\r') {
continue;
}
if (c == '!') {
if (line_len + 1 < sizeof(line)) {
line[line_len++] = c;
}
line[line_len] = '\0';
data.valid = energy_ok || total_p_ok || p1_ok || p2_ok || p3_ok;
if (data.valid) {
g_frames_ok++;
} else {
g_frames_parse_fail++;
}
return data.valid;
}
if (c == '\n') {
line[line_len] = '\0';
if (line[0] == '!') {
return got_any;
data.valid = energy_ok || total_p_ok || p1_ok || p2_ok || p3_ok;
if (data.valid) {
g_frames_ok++;
} else {
g_frames_parse_fail++;
}
return data.valid;
}
float value = NAN;
@@ -146,10 +237,13 @@ static bool meter_read_ascii(MeterData &data) {
line[line_len++] = c;
}
}
delay(5);
}
data.valid = energy_ok || total_p_ok || p1_ok || p2_ok || p3_ok;
data.valid = got_any;
if (data.valid) {
g_frames_ok++;
} else {
g_frames_parse_fail++;
}
return data.valid;
}
@@ -161,5 +255,10 @@ bool meter_read(MeterData &data) {
data.phase_power_w[2] = NAN;
data.valid = false;
return meter_read_ascii(data);
const char *frame = nullptr;
size_t len = 0;
if (!meter_poll_frame(frame, len)) {
return false;
}
return meter_parse_frame(frame, len, data);
}

View File

@@ -10,6 +10,21 @@ static PubSubClient mqtt_client(wifi_client);
static WifiMqttConfig g_cfg;
static String g_client_id;
static const char *fault_text(FaultType fault) {
switch (fault) {
case FaultType::MeterRead:
return "meter";
case FaultType::Decode:
return "decode";
case FaultType::LoraTx:
return "loratx";
case FaultType::TimeSync:
return "timesync";
default:
return "none";
}
}
void mqtt_init(const WifiMqttConfig &config, const char *device_id) {
g_cfg = config;
mqtt_client.setServer(config.mqtt_host.c_str(), config.mqtt_port);
@@ -66,10 +81,9 @@ bool mqtt_publish_faults(const char *device_id, const FaultCounters &counters, F
doc["err_m"] = counters.meter_read_fail;
doc["err_d"] = counters.decode_fail;
doc["err_tx"] = counters.lora_tx_fail;
if (last_error != FaultType::None) {
doc["err_last"] = static_cast<uint8_t>(last_error);
doc["err_last_age"] = last_error_age_sec;
}
doc["err_last_text"] = fault_text(last_error);
doc["err_last_age"] = last_error != FaultType::None ? last_error_age_sec : 0;
String payload;
size_t len = serializeJson(doc, payload);
@@ -138,6 +152,8 @@ bool mqtt_publish_discovery(const char *device_id) {
ok = ok && publish_discovery_sensor(device_id, "err_m", "Meter Read Errors", "count", "", faults_topic.c_str(), "{{ value_json.err_m }}");
ok = ok && publish_discovery_sensor(device_id, "err_d", "Decode Errors", "count", "", faults_topic.c_str(), "{{ value_json.err_d }}");
ok = ok && publish_discovery_sensor(device_id, "err_tx", "LoRa TX Errors", "count", "", faults_topic.c_str(), "{{ value_json.err_tx }}");
ok = ok && publish_discovery_sensor(device_id, "err_last", "Last Error Code", "", "", faults_topic.c_str(), "{{ value_json.err_last }}");
ok = ok && publish_discovery_sensor(device_id, "err_last_text", "Last Error", "", "", faults_topic.c_str(), "{{ value_json.err_last_text }}");
ok = ok && publish_discovery_sensor(device_id, "err_last_age", "Last Error Age", "s", "", faults_topic.c_str(), "{{ value_json.err_last_age }}");
return ok;
}

342
src/payload_codec.cpp Normal file
View File

@@ -0,0 +1,342 @@
#include "payload_codec.h"
#include <limits.h>
static constexpr uint16_t kMagic = 0xDDB3;
static constexpr uint8_t kSchema = 2;
static constexpr uint8_t kFlags = 0x01;
static constexpr size_t kMaxSamples = 30;
static void write_u16_le(uint8_t *dst, uint16_t value) {
dst[0] = static_cast<uint8_t>(value & 0xFF);
dst[1] = static_cast<uint8_t>((value >> 8) & 0xFF);
}
static void write_u32_le(uint8_t *dst, uint32_t value) {
dst[0] = static_cast<uint8_t>(value & 0xFF);
dst[1] = static_cast<uint8_t>((value >> 8) & 0xFF);
dst[2] = static_cast<uint8_t>((value >> 16) & 0xFF);
dst[3] = static_cast<uint8_t>((value >> 24) & 0xFF);
}
static uint16_t read_u16_le(const uint8_t *src) {
return static_cast<uint16_t>(src[0]) | (static_cast<uint16_t>(src[1]) << 8);
}
static uint32_t read_u32_le(const uint8_t *src) {
return static_cast<uint32_t>(src[0]) |
(static_cast<uint32_t>(src[1]) << 8) |
(static_cast<uint32_t>(src[2]) << 16) |
(static_cast<uint32_t>(src[3]) << 24);
}
size_t uleb128_encode(uint32_t v, uint8_t *out, size_t cap) {
size_t i = 0;
do {
if (i >= cap) {
return 0;
}
uint8_t byte = static_cast<uint8_t>(v & 0x7F);
v >>= 7;
if (v != 0) {
byte |= 0x80;
}
out[i++] = byte;
} while (v != 0);
return i;
}
bool uleb128_decode(const uint8_t *in, size_t len, size_t *pos, uint32_t *v) {
if (!in || !pos || !v) {
return false;
}
uint32_t result = 0;
uint8_t shift = 0;
size_t p = *pos;
for (uint8_t i = 0; i < 5; ++i) {
if (p >= len) {
return false;
}
uint8_t byte = in[p++];
if (i == 4 && (byte & 0xF0) != 0) {
return false;
}
result |= static_cast<uint32_t>(byte & 0x7F) << shift;
if ((byte & 0x80) == 0) {
*pos = p;
*v = result;
return true;
}
shift = static_cast<uint8_t>(shift + 7);
}
return false;
}
uint32_t zigzag32(int32_t x) {
return (static_cast<uint32_t>(x) << 1) ^ static_cast<uint32_t>(x >> 31);
}
int32_t unzigzag32(uint32_t u) {
return static_cast<int32_t>((u >> 1) ^ (static_cast<uint32_t>(-static_cast<int32_t>(u & 1))));
}
size_t svarint_encode(int32_t x, uint8_t *out, size_t cap) {
uint32_t zz = zigzag32(x);
return uleb128_encode(zz, out, cap);
}
bool svarint_decode(const uint8_t *in, size_t len, size_t *pos, int32_t *x) {
uint32_t u = 0;
if (!uleb128_decode(in, len, pos, &u)) {
return false;
}
*x = unzigzag32(u);
return true;
}
static bool ensure_capacity(size_t needed, size_t cap, size_t pos) {
return pos + needed <= cap;
}
bool encode_batch(const BatchInput &in, uint8_t *out, size_t out_cap, size_t *out_len) {
if (!out || !out_len) {
return false;
}
if (in.n == 0 || in.n > kMaxSamples) {
return false;
}
if (in.dt_s == 0) {
return false;
}
size_t pos = 0;
if (!ensure_capacity(21, out_cap, pos)) {
return false;
}
write_u16_le(&out[pos], kMagic);
pos += 2;
out[pos++] = kSchema;
out[pos++] = kFlags;
write_u16_le(&out[pos], in.sender_id);
pos += 2;
write_u16_le(&out[pos], in.batch_id);
pos += 2;
write_u32_le(&out[pos], in.t_last);
pos += 4;
out[pos++] = in.dt_s;
out[pos++] = in.n;
write_u16_le(&out[pos], in.battery_mV);
pos += 2;
out[pos++] = in.err_m;
out[pos++] = in.err_d;
out[pos++] = in.err_tx;
out[pos++] = in.err_last;
out[pos++] = in.err_rx_reject;
if (!ensure_capacity(4, out_cap, pos)) {
return false;
}
write_u32_le(&out[pos], in.energy_wh[0]);
pos += 4;
for (uint8_t i = 1; i < in.n; ++i) {
if (in.energy_wh[i] < in.energy_wh[i - 1]) {
return false;
}
uint32_t delta = in.energy_wh[i] - in.energy_wh[i - 1];
size_t wrote = uleb128_encode(delta, &out[pos], out_cap - pos);
if (wrote == 0) {
return false;
}
pos += wrote;
}
auto encode_phase = [&](const int16_t *phase) -> bool {
if (!ensure_capacity(2, out_cap, pos)) {
return false;
}
write_u16_le(&out[pos], static_cast<uint16_t>(phase[0]));
pos += 2;
for (uint8_t i = 1; i < in.n; ++i) {
int32_t delta = static_cast<int32_t>(phase[i]) - static_cast<int32_t>(phase[i - 1]);
size_t wrote = svarint_encode(delta, &out[pos], out_cap - pos);
if (wrote == 0) {
return false;
}
pos += wrote;
}
return true;
};
if (!encode_phase(in.p1_w)) {
return false;
}
if (!encode_phase(in.p2_w)) {
return false;
}
if (!encode_phase(in.p3_w)) {
return false;
}
*out_len = pos;
return true;
}
bool decode_batch(const uint8_t *buf, size_t len, BatchInput *out) {
if (!buf || !out) {
return false;
}
size_t pos = 0;
if (len < 21) {
return false;
}
uint16_t magic = read_u16_le(&buf[pos]);
pos += 2;
uint8_t schema = buf[pos++];
uint8_t flags = buf[pos++];
if (magic != kMagic || schema != kSchema || (flags & 0x01) == 0) {
return false;
}
out->sender_id = read_u16_le(&buf[pos]);
pos += 2;
out->batch_id = read_u16_le(&buf[pos]);
pos += 2;
out->t_last = read_u32_le(&buf[pos]);
pos += 4;
out->dt_s = buf[pos++];
out->n = buf[pos++];
out->battery_mV = read_u16_le(&buf[pos]);
pos += 2;
out->err_m = buf[pos++];
out->err_d = buf[pos++];
out->err_tx = buf[pos++];
out->err_last = buf[pos++];
out->err_rx_reject = buf[pos++];
if (out->n == 0 || out->n > kMaxSamples || out->dt_s == 0) {
return false;
}
if (pos + 4 > len) {
return false;
}
out->energy_wh[0] = read_u32_le(&buf[pos]);
pos += 4;
for (uint8_t i = 1; i < out->n; ++i) {
uint32_t delta = 0;
if (!uleb128_decode(buf, len, &pos, &delta)) {
return false;
}
uint64_t sum = static_cast<uint64_t>(out->energy_wh[i - 1]) + static_cast<uint64_t>(delta);
if (sum > UINT32_MAX) {
return false;
}
out->energy_wh[i] = static_cast<uint32_t>(sum);
}
auto decode_phase = [&](int16_t *phase) -> bool {
if (pos + 2 > len) {
return false;
}
phase[0] = static_cast<int16_t>(read_u16_le(&buf[pos]));
pos += 2;
int32_t prev = static_cast<int32_t>(phase[0]);
for (uint8_t i = 1; i < out->n; ++i) {
int32_t delta = 0;
if (!svarint_decode(buf, len, &pos, &delta)) {
return false;
}
int32_t value = prev + delta;
if (value < INT16_MIN || value > INT16_MAX) {
return false;
}
phase[i] = static_cast<int16_t>(value);
prev = value;
}
return true;
};
if (!decode_phase(out->p1_w)) {
return false;
}
if (!decode_phase(out->p2_w)) {
return false;
}
if (!decode_phase(out->p3_w)) {
return false;
}
for (uint8_t i = out->n; i < kMaxSamples; ++i) {
out->energy_wh[i] = 0;
out->p1_w[i] = 0;
out->p2_w[i] = 0;
out->p3_w[i] = 0;
}
return pos == len;
}
#ifdef PAYLOAD_CODEC_TEST
bool payload_codec_self_test() {
BatchInput in = {};
in.sender_id = 1;
in.batch_id = 42;
in.t_last = 1700000000;
in.dt_s = 1;
in.n = 5;
in.battery_mV = 3750;
in.err_m = 2;
in.err_d = 1;
in.err_tx = 3;
in.err_last = 2;
in.err_rx_reject = 1;
in.energy_wh[0] = 100000;
in.energy_wh[1] = 100001;
in.energy_wh[2] = 100050;
in.energy_wh[3] = 100050;
in.energy_wh[4] = 100200;
in.p1_w[0] = -120;
in.p1_w[1] = -90;
in.p1_w[2] = 1910;
in.p1_w[3] = -90;
in.p1_w[4] = 500;
in.p2_w[0] = 50;
in.p2_w[1] = -1950;
in.p2_w[2] = 60;
in.p2_w[3] = 2060;
in.p2_w[4] = -10;
in.p3_w[0] = 0;
in.p3_w[1] = 10;
in.p3_w[2] = -1990;
in.p3_w[3] = 10;
in.p3_w[4] = 20;
uint8_t buf[256];
size_t len = 0;
if (!encode_batch(in, buf, sizeof(buf), &len)) {
Serial.println("payload_codec_self_test: encode failed");
return false;
}
BatchInput out = {};
if (!decode_batch(buf, len, &out)) {
Serial.println("payload_codec_self_test: decode failed");
return false;
}
if (out.sender_id != in.sender_id || out.batch_id != in.batch_id || out.t_last != in.t_last ||
out.dt_s != in.dt_s || out.n != in.n || out.battery_mV != in.battery_mV ||
out.err_m != in.err_m || out.err_d != in.err_d || out.err_tx != in.err_tx || out.err_last != in.err_last ||
out.err_rx_reject != in.err_rx_reject) {
Serial.println("payload_codec_self_test: header mismatch");
return false;
}
for (uint8_t i = 0; i < in.n; ++i) {
if (out.energy_wh[i] != in.energy_wh[i] || out.p1_w[i] != in.p1_w[i] || out.p2_w[i] != in.p2_w[i] ||
out.p3_w[i] != in.p3_w[i]) {
Serial.println("payload_codec_self_test: sample mismatch");
return false;
}
}
Serial.printf("payload_codec_self_test: ok len=%u\n", static_cast<unsigned>(len));
return true;
}
#endif

37
src/payload_codec.h Normal file
View File

@@ -0,0 +1,37 @@
#pragma once
#include <Arduino.h>
struct BatchInput {
uint16_t sender_id;
uint16_t batch_id;
uint32_t t_last;
uint8_t dt_s;
uint8_t n;
uint16_t battery_mV;
uint8_t err_m;
uint8_t err_d;
uint8_t err_tx;
uint8_t err_last;
uint8_t err_rx_reject;
uint32_t energy_wh[30];
int16_t p1_w[30];
int16_t p2_w[30];
int16_t p3_w[30];
};
bool encode_batch(const BatchInput &in, uint8_t *out, size_t out_cap, size_t *out_len);
bool decode_batch(const uint8_t *buf, size_t len, BatchInput *out);
size_t uleb128_encode(uint32_t v, uint8_t *out, size_t cap);
bool uleb128_decode(const uint8_t *in, size_t len, size_t *pos, uint32_t *v);
uint32_t zigzag32(int32_t x);
int32_t unzigzag32(uint32_t u);
size_t svarint_encode(int32_t x, uint8_t *out, size_t cap);
bool svarint_decode(const uint8_t *in, size_t len, size_t *pos, int32_t *x);
#ifdef PAYLOAD_CODEC_TEST
bool payload_codec_self_test();
#endif

View File

@@ -6,11 +6,13 @@
#include <esp_sleep.h>
static constexpr float BATTERY_DIVIDER = 2.0f;
static constexpr float BATTERY_CAL = 1.0f;
static constexpr float ADC_REF_V = 3.3f;
void power_sender_init() {
setCpuFrequencyMhz(80);
WiFi.mode(WIFI_OFF);
esp_wifi_stop();
esp_wifi_deinit();
btStop();
analogReadResolution(12);
pinMode(PIN_BAT_ADC, INPUT);
@@ -22,22 +24,79 @@ void power_receiver_init() {
pinMode(PIN_BAT_ADC, INPUT);
}
void read_battery(MeterData &data) {
const int samples = 8;
uint32_t sum = 0;
for (int i = 0; i < samples; ++i) {
sum += analogRead(PIN_BAT_ADC);
delay(5);
void power_configure_unused_pins_sender() {
// Board-specific: only touch pins that are known unused and safe on TTGO LoRa32 v1.6.1
const uint8_t pins[] = {32, 33};
for (uint8_t pin : pins) {
pinMode(pin, INPUT_PULLDOWN);
}
float avg = static_cast<float>(sum) / samples;
}
void read_battery(MeterData &data) {
uint32_t sum = 0;
uint16_t samples[5] = {};
for (uint8_t i = 0; i < 5; ++i) {
samples[i] = analogRead(PIN_BAT_ADC);
sum += samples[i];
}
float avg = static_cast<float>(sum) / 5.0f;
float v = (avg / 4095.0f) * ADC_REF_V * BATTERY_DIVIDER * BATTERY_CAL;
if (SERIAL_DEBUG_MODE) {
Serial.printf("bat_adc: %u %u %u %u %u avg=%.1f v=%.3f\n",
samples[0], samples[1], samples[2], samples[3], samples[4],
static_cast<double>(avg), static_cast<double>(v));
}
data.battery_voltage_v = v;
data.battery_percent = battery_percent_from_voltage(v);
}
uint8_t battery_percent_from_voltage(float voltage_v) {
float pct = (voltage_v - 3.0f) / (4.2f - 3.0f) * 100.0f;
if (isnan(voltage_v)) {
return 0;
}
struct LutPoint {
float v;
uint8_t pct;
};
static const LutPoint kCurve[] = {
{4.20f, 100},
{4.15f, 95},
{4.11f, 90},
{4.08f, 85},
{4.02f, 80},
{3.98f, 75},
{3.95f, 70},
{3.91f, 60},
{3.87f, 50},
{3.85f, 45},
{3.84f, 40},
{3.82f, 35},
{3.80f, 30},
{3.77f, 25},
{3.75f, 20},
{3.73f, 15},
{3.70f, 10},
{3.65f, 5},
{3.60f, 2},
{2.90f, 0},
};
if (voltage_v >= kCurve[0].v) {
return kCurve[0].pct;
}
if (voltage_v <= kCurve[sizeof(kCurve) / sizeof(kCurve[0]) - 1].v) {
return 0;
}
for (size_t i = 0; i + 1 < sizeof(kCurve) / sizeof(kCurve[0]); ++i) {
const LutPoint &hi = kCurve[i];
const LutPoint &lo = kCurve[i + 1];
if (voltage_v <= hi.v && voltage_v >= lo.v) {
float span = hi.v - lo.v;
if (span <= 0.0f) {
return lo.pct;
}
float t = (voltage_v - lo.v) / span;
float pct = lo.pct + t * (hi.pct - lo.pct);
if (pct < 0.0f) {
pct = 0.0f;
}
@@ -45,6 +104,9 @@ uint8_t battery_percent_from_voltage(float voltage_v) {
pct = 100.0f;
}
return static_cast<uint8_t>(pct + 0.5f);
}
}
return 0;
}
void light_sleep_ms(uint32_t ms) {

View File

@@ -1,6 +1,7 @@
#include "rtc_ds3231.h"
#include "config.h"
#include <Wire.h>
#include <string>
#include <time.h>
static constexpr uint8_t DS3231_ADDR = 0x68;
@@ -17,12 +18,14 @@ static time_t timegm_fallback(struct tm *tm_utc) {
if (!tm_utc) {
return static_cast<time_t>(-1);
}
char *old_tz = getenv("TZ");
const char *old_tz = getenv("TZ");
// getenv() may return a pointer into mutable storage that becomes invalid after setenv().
std::string old_tz_copy = old_tz ? old_tz : "";
setenv("TZ", "UTC0", 1);
tzset();
time_t t = mktime(tm_utc);
if (old_tz) {
setenv("TZ", old_tz, 1);
if (!old_tz_copy.empty()) {
setenv("TZ", old_tz_copy.c_str(), 1);
} else {
unsetenv("TZ");
}

130
src/sd_logger.cpp Normal file
View File

@@ -0,0 +1,130 @@
#include "sd_logger.h"
#include "config.h"
#include <SD.h>
#include <SPI.h>
#include <time.h>
static bool g_sd_ready = false;
static SPIClass *g_sd_spi = nullptr;
static const char *fault_text(FaultType fault) {
switch (fault) {
case FaultType::MeterRead:
return "meter";
case FaultType::Decode:
return "decode";
case FaultType::LoraTx:
return "loratx";
case FaultType::TimeSync:
return "timesync";
default:
return "";
}
}
static bool ensure_dir(const String &path) {
if (SD.exists(path)) {
return true;
}
return SD.mkdir(path);
}
static String format_date_utc(uint32_t ts_utc) {
time_t t = static_cast<time_t>(ts_utc);
struct tm tm_utc;
gmtime_r(&t, &tm_utc);
char buf[16];
snprintf(buf, sizeof(buf), "%04d-%02d-%02d",
tm_utc.tm_year + 1900,
tm_utc.tm_mon + 1,
tm_utc.tm_mday);
return String(buf);
}
void sd_logger_init() {
if (!ENABLE_SD_LOGGING) {
g_sd_ready = false;
return;
}
if (!g_sd_spi) {
g_sd_spi = new SPIClass(HSPI);
}
g_sd_spi->begin(PIN_SD_SCK, PIN_SD_MISO, PIN_SD_MOSI, PIN_SD_CS);
g_sd_ready = SD.begin(PIN_SD_CS, *g_sd_spi);
if (SERIAL_DEBUG_MODE) {
if (g_sd_ready) {
uint8_t type = SD.cardType();
uint64_t size = SD.cardSize();
Serial.printf("sd: ok type=%u size=%llu\n", static_cast<unsigned>(type), static_cast<unsigned long long>(size));
} else {
Serial.println("sd: init failed");
}
}
}
bool sd_logger_is_ready() {
return g_sd_ready;
}
void sd_logger_log_sample(const MeterData &data, bool include_error_text) {
if (!g_sd_ready || data.ts_utc == 0) {
return;
}
String root_dir = "/dd3";
if (!ensure_dir(root_dir)) {
return;
}
String sender_dir = root_dir + "/" + String(data.device_id);
if (!ensure_dir(sender_dir)) {
return;
}
String filename = sender_dir + "/" + format_date_utc(data.ts_utc) + ".csv";
bool new_file = !SD.exists(filename);
File f = SD.open(filename, FILE_APPEND);
if (!f) {
return;
}
if (new_file) {
f.println("ts_utc,p_w,p1_w,p2_w,p3_w,e_kwh,bat_v,bat_pct,rssi,snr,err_m,err_d,err_tx,err_last");
}
f.print(data.ts_utc);
f.print(',');
f.print(data.total_power_w, 1);
f.print(',');
f.print(data.phase_power_w[0], 1);
f.print(',');
f.print(data.phase_power_w[1], 1);
f.print(',');
f.print(data.phase_power_w[2], 1);
f.print(',');
f.print(data.energy_total_kwh, 3);
f.print(',');
f.print(data.battery_voltage_v, 2);
f.print(',');
f.print(data.battery_percent);
f.print(',');
f.print(data.link_rssi_dbm);
f.print(',');
if (isnan(data.link_snr_db)) {
f.print("");
} else {
f.print(data.link_snr_db, 1);
}
f.print(',');
f.print(data.err_meter_read);
f.print(',');
f.print(data.err_decode);
f.print(',');
f.print(data.err_lora_tx);
f.print(',');
if (include_error_text && data.last_error != FaultType::None) {
f.print(fault_text(data.last_error));
}
f.println();
f.close();
}

7
src/sd_logger.h Normal file
View File

@@ -0,0 +1,7 @@
#pragma once
#include "data_model.h"
void sd_logger_init();
bool sd_logger_is_ready();
void sd_logger_log_sample(const MeterData &data, bool include_error_text);

View File

@@ -8,6 +8,8 @@ static bool g_time_synced = false;
static bool g_tz_set = false;
static bool g_rtc_present = false;
static uint32_t g_last_sync_utc = 0;
static constexpr uint32_t kMinValidEpoch = 1672531200UL; // 2023-01-01
static constexpr uint32_t kMaxValidEpoch = 4102444800UL; // 2100-01-01
static void note_last_sync(uint32_t epoch) {
if (epoch == 0) {
@@ -83,7 +85,11 @@ bool time_send_timesync(uint16_t device_id_short) {
pkt.payload_type = PayloadType::TimeSync;
pkt.payload_len = compressed_len;
memcpy(pkt.payload, compressed, compressed_len);
return lora_send(pkt);
bool ok = lora_send(pkt);
if (ok) {
lora_receive_continuous();
}
return ok;
}
bool time_handle_timesync_payload(const uint8_t *payload, size_t len) {
@@ -138,6 +144,16 @@ bool time_try_load_from_rtc() {
}
uint32_t epoch = 0;
if (!rtc_ds3231_read_epoch(epoch) || epoch == 0) {
if (SERIAL_DEBUG_MODE) {
Serial.println("rtc: read failed");
}
return false;
}
bool valid = epoch >= kMinValidEpoch && epoch <= kMaxValidEpoch;
if (SERIAL_DEBUG_MODE) {
Serial.printf("rtc: epoch=%lu %s\n", static_cast<unsigned long>(epoch), valid ? "accepted" : "rejected");
}
if (!valid) {
return false;
}
time_set_utc(epoch);

View File

@@ -2,21 +2,96 @@
#include <WebServer.h>
#include "wifi_manager.h"
#include "config.h"
#include "sd_logger.h"
#include "time_manager.h"
#include "html_util.h"
#include <SD.h>
#include <WiFi.h>
#include <time.h>
#include <new>
#include <stdlib.h>
static WebServer server(80);
static const SenderStatus *g_statuses = nullptr;
static uint8_t g_status_count = 0;
static WifiMqttConfig g_config;
static bool g_is_ap = false;
static String g_web_user;
static String g_web_pass;
static const FaultCounters *g_sender_faults = nullptr;
static const FaultType *g_sender_last_errors = nullptr;
static MeterData g_last_batch[NUM_SENDERS][METER_BATCH_MAX_SAMPLES];
static uint8_t g_last_batch_count[NUM_SENDERS] = {};
struct HistoryBin {
uint32_t ts;
float value;
uint32_t count;
};
enum class HistoryMode : uint8_t {
Avg = 0,
Max = 1
};
struct HistoryJob {
bool active;
bool done;
bool error;
String error_msg;
String device_id;
HistoryMode mode;
uint32_t start_ts;
uint32_t end_ts;
uint32_t res_sec;
uint32_t bins_count;
uint32_t bins_filled;
uint16_t day_index;
File file;
HistoryBin *bins;
};
static HistoryJob g_history = {};
static constexpr size_t SD_LIST_MAX_FILES = 200;
static constexpr size_t SD_DOWNLOAD_MAX_PATH = 160;
static bool auth_required() {
return g_is_ap ? WEB_AUTH_REQUIRE_AP : WEB_AUTH_REQUIRE_STA;
}
static const char *fault_text(FaultType fault) {
switch (fault) {
case FaultType::MeterRead:
return "meter";
case FaultType::Decode:
return "decode";
case FaultType::LoraTx:
return "loratx";
case FaultType::TimeSync:
return "timesync";
default:
return "none";
}
}
static bool ensure_auth() {
if (!auth_required()) {
return true;
}
const char *user = g_web_user.c_str();
const char *pass = g_web_pass.c_str();
if (server.authenticate(user, pass)) {
return true;
}
server.requestAuthentication(BASIC_AUTH, "DD3", "Authentication required");
return false;
}
static String html_header(const String &title) {
String safe_title = html_escape(title);
String h = "<!DOCTYPE html><html><head><meta charset='utf-8'><meta name='viewport' content='width=device-width,initial-scale=1'>";
h += "<title>" + title + "</title></head><body>";
h += "<h2>" + title + "</h2>";
h += "<title>" + safe_title + "</title></head><body>";
h += "<h2>" + safe_title + "</h2>";
return h;
}
@@ -37,9 +112,223 @@ static String format_faults(uint8_t idx) {
s += String(g_sender_faults[idx].lora_tx_fail);
s += " last:";
s += String(static_cast<uint8_t>(g_sender_last_errors[idx]));
s += " (" + String(fault_text(g_sender_last_errors[idx])) + ")";
return s;
}
static bool sanitize_sd_download_path(String &path, String &error) {
path.trim();
if (path.length() == 0) {
error = "empty";
return false;
}
if (path.startsWith("dd3/")) {
path = "/" + path;
}
if (path.length() > SD_DOWNLOAD_MAX_PATH) {
error = "too_long";
return false;
}
if (!path.startsWith("/dd3/")) {
error = "prefix";
return false;
}
if (path.indexOf("..") >= 0) {
error = "dotdot";
return false;
}
if (path.indexOf('\\') >= 0) {
error = "backslash";
return false;
}
if (path.indexOf("//") >= 0) {
error = "repeated_slash";
return false;
}
return true;
}
static bool checkbox_checked(const char *name) {
if (!server.hasArg(name)) {
return false;
}
String val = server.arg(name);
return val == "on" || val == "true" || val == "1";
}
static bool sanitize_history_device_id(const String &input, String &out_device_id) {
if (sanitize_device_id(input, out_device_id)) {
return true;
}
if (g_statuses) {
for (uint8_t i = 0; i < g_status_count; ++i) {
String known = g_statuses[i].last_data.device_id;
if (input.equalsIgnoreCase(known) && sanitize_device_id(known, out_device_id)) {
return true;
}
}
}
return false;
}
static String sanitize_download_filename(const String &input, bool &clean) {
String out;
out.reserve(input.length());
clean = true;
for (size_t i = 0; i < input.length(); ++i) {
unsigned char c = static_cast<unsigned char>(input[i]);
if (c < 32 || c == 127 || c == '"' || c == '\\' || c == '/') {
out += '_';
clean = false;
continue;
}
out += static_cast<char>(c);
}
out.trim();
if (out.length() == 0) {
out = "download.bin";
clean = false;
}
return out;
}
static void history_reset() {
if (g_history.file) {
g_history.file.close();
}
if (g_history.bins) {
delete[] g_history.bins;
}
g_history = {};
}
static String history_date_from_epoch(uint32_t ts_utc) {
time_t t = static_cast<time_t>(ts_utc);
struct tm tm_utc;
gmtime_r(&t, &tm_utc);
char buf[16];
snprintf(buf, sizeof(buf), "%04d-%02d-%02d", tm_utc.tm_year + 1900, tm_utc.tm_mon + 1, tm_utc.tm_mday);
return String(buf);
}
static bool history_open_next_file() {
if (!g_history.active || g_history.done || g_history.error) {
return false;
}
if (g_history.file) {
g_history.file.close();
}
uint32_t day_ts = g_history.start_ts + static_cast<uint32_t>(g_history.day_index) * 86400UL;
if (day_ts > g_history.end_ts) {
g_history.done = true;
return false;
}
String path = String("/dd3/") + g_history.device_id + "/" + history_date_from_epoch(day_ts) + ".csv";
g_history.file = SD.open(path.c_str(), FILE_READ);
g_history.day_index++;
return true;
}
static bool history_parse_line(const char *line, uint32_t &ts_out, float &p_out) {
if (!line || line[0] < '0' || line[0] > '9') {
return false;
}
const char *comma = strchr(line, ',');
if (!comma) {
return false;
}
char ts_buf[16];
size_t ts_len = static_cast<size_t>(comma - line);
if (ts_len >= sizeof(ts_buf)) {
return false;
}
memcpy(ts_buf, line, ts_len);
ts_buf[ts_len] = '\0';
char *end = nullptr;
uint32_t ts = static_cast<uint32_t>(strtoul(ts_buf, &end, 10));
if (end == ts_buf) {
return false;
}
const char *p_start = comma + 1;
const char *p_end = strchr(p_start, ',');
char p_buf[16];
size_t p_len = p_end ? static_cast<size_t>(p_end - p_start) : strlen(p_start);
if (p_len >= sizeof(p_buf)) {
return false;
}
memcpy(p_buf, p_start, p_len);
p_buf[p_len] = '\0';
char *endp = nullptr;
float p = strtof(p_buf, &endp);
if (endp == p_buf) {
return false;
}
ts_out = ts;
p_out = p;
return true;
}
static void history_tick() {
if (!g_history.active || g_history.done || g_history.error) {
return;
}
if (!sd_logger_is_ready()) {
g_history.error = true;
g_history.error_msg = "sd_not_ready";
return;
}
uint32_t start_ms = millis();
while (millis() - start_ms < SD_HISTORY_TIME_BUDGET_MS) {
if (!g_history.file) {
if (!history_open_next_file()) {
if (g_history.done) {
g_history.active = false;
}
return;
}
}
if (!g_history.file.available()) {
g_history.file.close();
continue;
}
char line[160];
size_t n = g_history.file.readBytesUntil('\n', line, sizeof(line) - 1);
line[n] = '\0';
if (n == 0) {
continue;
}
uint32_t ts = 0;
float p = 0.0f;
if (!history_parse_line(line, ts, p)) {
continue;
}
if (ts < g_history.start_ts || ts > g_history.end_ts) {
continue;
}
uint32_t idx = (ts - g_history.start_ts) / g_history.res_sec;
if (idx >= g_history.bins_count) {
continue;
}
HistoryBin &bin = g_history.bins[idx];
if (bin.count == 0) {
bin.ts = g_history.start_ts + idx * g_history.res_sec;
bin.value = p;
bin.count = 1;
g_history.bins_filled++;
} else if (g_history.mode == HistoryMode::Avg) {
bin.value += p;
bin.count++;
} else {
if (p > bin.value) {
bin.value = p;
}
bin.count++;
}
}
}
static String render_sender_block(const SenderStatus &status) {
String s;
s += "<div style='margin-bottom:10px;padding:6px;border:1px solid #ccc'>";
@@ -52,9 +341,19 @@ static String render_sender_block(const SenderStatus &status) {
}
}
}
s += "<strong>" + String(status.last_data.device_id) + "</strong>";
String device_id = status.last_data.device_id;
String device_id_safe = html_escape(device_id);
String device_id_url = url_encode_component(device_id);
s += "<strong><a href='/sender/" + device_id_url + "' target='_blank' rel='noopener noreferrer'>" + device_id_safe + "</a></strong>";
if (status.has_data && status.last_data.link_valid) {
s += " R:" + String(status.last_data.link_rssi_dbm) + " S:" + String(status.last_data.link_snr_db, 1);
s += " RSSI:" + String(status.last_data.link_rssi_dbm) + " SNR:" + String(status.last_data.link_snr_db, 1);
}
if (status.has_data) {
s += " err_tx:" + String(status.last_data.err_lora_tx);
s += " err_last:" + String(static_cast<uint8_t>(status.last_data.last_error));
s += " (" + String(fault_text(status.last_data.last_error)) + ")";
s += " rx_reject:" + String(status.last_data.rx_reject_reason);
s += " (" + String(rx_reject_reason_text(static_cast<RxRejectReason>(status.last_data.rx_reject_reason))) + ")";
}
s += format_faults(idx);
s += "<br>";
@@ -63,13 +362,55 @@ static String render_sender_block(const SenderStatus &status) {
} else {
s += "Energy: " + String(status.last_data.energy_total_kwh, 3) + " kWh<br>";
s += "Power: " + String(status.last_data.total_power_w, 1) + " W<br>";
s += "Battery: " + String(status.last_data.battery_voltage_v, 2) + " V (" + String(status.last_data.battery_percent) + ")";
s += "P1/P2/P3: " + String(status.last_data.phase_power_w[0], 1) + " / " + String(status.last_data.phase_power_w[1], 1) +
" / " + String(status.last_data.phase_power_w[2], 1) + " W<br>";
s += "Battery: " + String(status.last_data.battery_percent) + "% (" + String(status.last_data.battery_voltage_v, 2) + " V)";
}
s += "</div>";
return s;
}
static void append_sd_listing(String &html, const String &dir_path, uint8_t depth, size_t &count) {
if (count >= SD_LIST_MAX_FILES || depth > 4) {
return;
}
File dir = SD.open(dir_path.c_str());
if (!dir || !dir.isDirectory()) {
return;
}
File entry = dir.openNextFile();
while (entry && count < SD_LIST_MAX_FILES) {
String name = entry.name();
String full_path = name;
if (!full_path.startsWith(dir_path)) {
if (!dir_path.endsWith("/")) {
full_path = dir_path + "/" + name;
} else {
full_path = dir_path + name;
}
}
if (entry.isDirectory()) {
html += "<li><strong>" + html_escape(full_path) + "/</strong></li>";
append_sd_listing(html, full_path, depth + 1, count);
} else {
String href = full_path;
if (!href.startsWith("/")) {
href = "/" + href;
}
String href_enc = url_encode_component(href);
html += "<li><a href='/sd/download?path=" + href_enc + "' target='_blank' rel='noopener noreferrer'>" + html_escape(full_path) + "</a>";
html += " (" + String(entry.size()) + " bytes)</li>";
count++;
}
entry = dir.openNextFile();
}
dir.close();
}
static void handle_root() {
if (!ensure_auth()) {
return;
}
String html = html_header("DD3 Bridge Status");
html += g_is_ap ? "<p>Mode: AP</p>" : "<p>Mode: STA</p>";
@@ -79,6 +420,18 @@ static void handle_root() {
}
}
if (sd_logger_is_ready()) {
html += "<h3>SD Files</h3><ul>";
size_t count = 0;
append_sd_listing(html, "/dd3", 0, count);
if (count >= SD_LIST_MAX_FILES) {
html += "<li>Listing truncated...</li>";
}
html += "</ul>";
} else {
html += "<p>SD: not ready</p>";
}
html += "<p><a href='/wifi'>Configure WiFi/MQTT/NTP</a></p>";
html += "<p><a href='/manual'>Manual</a></p>";
html += html_footer();
@@ -86,16 +439,26 @@ static void handle_root() {
}
static void handle_wifi_get() {
if (!ensure_auth()) {
return;
}
String html = html_header("WiFi/MQTT Config");
html += "<form method='POST' action='/wifi'>";
html += "SSID: <input name='ssid' value='" + g_config.ssid + "'><br>";
html += "Password: <input name='pass' type='password' value='" + g_config.password + "'><br>";
html += "MQTT Host: <input name='mqhost' value='" + g_config.mqtt_host + "'><br>";
html += "SSID: <input name='ssid' value='" + html_escape(g_config.ssid) + "'><br>";
html += "Password: <input name='pass' type='password'> ";
html += "<label><input type='checkbox' name='clear_wifi_pass'> Clear password</label><br>";
html += "MQTT Host: <input name='mqhost' value='" + html_escape(g_config.mqtt_host) + "'><br>";
html += "MQTT Port: <input name='mqport' value='" + String(g_config.mqtt_port) + "'><br>";
html += "MQTT User: <input name='mquser' value='" + g_config.mqtt_user + "'><br>";
html += "MQTT Pass: <input name='mqpass' type='password' value='" + g_config.mqtt_pass + "'><br>";
html += "NTP Server 1: <input name='ntp1' value='" + g_config.ntp_server_1 + "'><br>";
html += "NTP Server 2: <input name='ntp2' value='" + g_config.ntp_server_2 + "'><br>";
html += "MQTT User: <input name='mquser' value='" + html_escape(g_config.mqtt_user) + "'><br>";
html += "MQTT Pass: <input name='mqpass' type='password'> ";
html += "<label><input type='checkbox' name='clear_mqtt_pass'> Clear password</label><br>";
html += "NTP Server 1: <input name='ntp1' value='" + html_escape(g_config.ntp_server_1) + "'><br>";
html += "NTP Server 2: <input name='ntp2' value='" + html_escape(g_config.ntp_server_2) + "'><br>";
html += "<hr>";
html += "Web UI User: <input name='webuser' value='" + html_escape(g_config.web_user) + "'><br>";
html += "Web UI Pass: <input name='webpass' type='password'> ";
html += "<label><input type='checkbox' name='clear_web_pass'> Clear password</label><br>";
html += "<div style='font-size:12px;color:#666;'>Leaving password blank keeps the existing one.</div>";
html += "<button type='submit'>Save</button>";
html += "</form>";
html += html_footer();
@@ -103,15 +466,38 @@ static void handle_wifi_get() {
}
static void handle_wifi_post() {
WifiMqttConfig cfg;
cfg.ntp_server_1 = "pool.ntp.org";
cfg.ntp_server_2 = "time.nist.gov";
if (!ensure_auth()) {
return;
}
WifiMqttConfig cfg = g_config;
cfg.ntp_server_1 = g_config.ntp_server_1.length() > 0 ? g_config.ntp_server_1 : "pool.ntp.org";
cfg.ntp_server_2 = g_config.ntp_server_2.length() > 0 ? g_config.ntp_server_2 : "time.nist.gov";
cfg.ssid = server.arg("ssid");
cfg.password = server.arg("pass");
String wifi_pass = server.arg("pass");
if (checkbox_checked("clear_wifi_pass")) {
cfg.password = "";
} else if (wifi_pass.length() > 0) {
cfg.password = wifi_pass;
}
cfg.mqtt_host = server.arg("mqhost");
cfg.mqtt_port = static_cast<uint16_t>(server.arg("mqport").toInt());
cfg.mqtt_user = server.arg("mquser");
cfg.mqtt_pass = server.arg("mqpass");
String mqtt_pass = server.arg("mqpass");
if (checkbox_checked("clear_mqtt_pass")) {
cfg.mqtt_pass = "";
} else if (mqtt_pass.length() > 0) {
cfg.mqtt_pass = mqtt_pass;
}
String web_user = server.arg("webuser");
if (web_user.length() > 0) {
cfg.web_user = web_user;
}
String web_pass = server.arg("webpass");
if (checkbox_checked("clear_web_pass")) {
cfg.web_pass = "";
} else if (web_pass.length() > 0) {
cfg.web_pass = web_pass;
}
if (server.arg("ntp1").length() > 0) {
cfg.ntp_server_1 = server.arg("ntp1");
}
@@ -119,6 +505,9 @@ static void handle_wifi_post() {
cfg.ntp_server_2 = server.arg("ntp2");
}
cfg.valid = true;
g_config = cfg;
g_web_user = cfg.web_user;
g_web_pass = cfg.web_pass;
wifi_save_config(cfg);
server.send(200, "text/html", "<html><body>Saved. Rebooting...</body></html>");
delay(1000);
@@ -126,21 +515,83 @@ static void handle_wifi_post() {
}
static void handle_sender() {
if (!ensure_auth()) {
return;
}
if (!g_statuses) {
server.send(404, "text/plain", "No senders");
return;
}
String uri = server.uri();
String device_id = uri.substring(String("/sender/").length());
String device_id_url = url_encode_component(device_id);
for (uint8_t i = 0; i < g_status_count; ++i) {
if (device_id.equalsIgnoreCase(g_statuses[i].last_data.device_id)) {
String html = html_header("Sender " + device_id);
html += render_sender_block(g_statuses[i]);
html += "<h3>History (Power)</h3>";
html += "<div>";
html += "Days: <input id='hist_days' type='number' min='1' max='" + String(SD_HISTORY_MAX_DAYS) + "' value='7' style='width:60px'> ";
html += "Res(min): <input id='hist_res' type='number' min='" + String(SD_HISTORY_MIN_RES_MIN) + "' value='5' style='width:60px'> ";
html += "<select id='hist_mode'><option value='avg'>avg</option><option value='max'>max</option></select> ";
html += "<button onclick='drawHistory()'>Draw</button>";
html += "<div id='hist_status' style='font-size:12px;margin-top:4px;color:#666;'></div>";
html += "<canvas id='hist_canvas' width='320' height='140' style='width:100%;max-width:520px;border:1px solid #ccc;margin-top:6px;'></canvas>";
html += "</div>";
html += "<script>";
html += "const deviceId='" + device_id_url + "';";
html += "let histTimer=null;";
html += "function histStatus(msg){document.getElementById('hist_status').textContent=msg;}";
html += "function drawHistory(){";
html += "const days=document.getElementById('hist_days').value;";
html += "const res=document.getElementById('hist_res').value;";
html += "const mode=document.getElementById('hist_mode').value;";
html += "histStatus('Starting...');";
html += "fetch(`/history/start?device_id=${deviceId}&days=${days}&res=${res}&mode=${mode}`)";
html += ".then(r=>r.json()).then(j=>{";
html += "if(!j.ok){histStatus('Error: '+(j.error||'failed'));return;}";
html += "if(histTimer){clearInterval(histTimer);}";
html += "histTimer=setInterval(()=>fetchHistory(),1000);";
html += "fetchHistory();";
html += "});";
html += "}";
html += "function fetchHistory(){";
html += "fetch(`/history/data?device_id=${deviceId}`).then(r=>r.json()).then(j=>{";
html += "if(!j.ready){histStatus(j.error?('Error: '+j.error):('Processing... '+(j.progress||0)+'%'));return;}";
html += "if(histTimer){clearInterval(histTimer);histTimer=null;}";
html += "renderChart(j.series);";
html += "histStatus('Done');";
html += "});";
html += "}";
html += "function renderChart(series){";
html += "const canvas=document.getElementById('hist_canvas');";
html += "const w=canvas.clientWidth;const h=canvas.clientHeight;";
html += "canvas.width=w;canvas.height=h;";
html += "const ctx=canvas.getContext('2d');";
html += "ctx.clearRect(0,0,w,h);";
html += "if(!series||series.length===0){ctx.fillText('No data',10,20);return;}";
html += "let min=Infinity,max=-Infinity;";
html += "for(const p of series){if(p[1]===null)continue; if(p[1]<min)min=p[1]; if(p[1]>max)max=p[1];}";
html += "if(!isFinite(min)||!isFinite(max)){ctx.fillText('No data',10,20);return;}";
html += "if(min===max){min=0;}";
html += "ctx.strokeStyle='#333';ctx.lineWidth=1;ctx.beginPath();";
html += "let first=true;";
html += "for(let i=0;i<series.length;i++){";
html += "const v=series[i][1];";
html += "if(v===null)continue;";
html += "const x=(i/(series.length-1))* (w-2) + 1;";
html += "const y=h-2-((v-min)/(max-min))*(h-4);";
html += "if(first){ctx.moveTo(x,y);first=false;} else {ctx.lineTo(x,y);} }";
html += "ctx.stroke();";
html += "ctx.fillStyle='#666';ctx.fillText(min.toFixed(0)+'W',4,h-4);";
html += "ctx.fillText(max.toFixed(0)+'W',4,12);";
html += "}";
html += "</script>";
if (g_last_batch_count[i] > 0) {
html += "<h3>Last batch (" + String(g_last_batch_count[i]) + " samples)</h3>";
html += "<table border='1' cellspacing='0' cellpadding='3'>";
html += "<tr><th>#</th><th>ts</th><th>e_kwh</th><th>p_w</th><th>p1_w</th><th>p2_w</th><th>p3_w</th>";
html += "<th>bat_v</th><th>bat_pct</th><th>rssi</th><th>snr</th><th>err_tx</th><th>err_last</th></tr>";
html += "<th>bat_v</th><th>bat_pct</th><th>rssi</th><th>snr</th><th>err_tx</th><th>err_last</th><th>rx_reject</th></tr>";
for (uint8_t r = 0; r < g_last_batch_count[i]; ++r) {
const MeterData &d = g_last_batch[i][r];
html += "<tr>";
@@ -156,7 +607,9 @@ static void handle_sender() {
html += "<td>" + String(d.link_rssi_dbm) + "</td>";
html += "<td>" + String(d.link_snr_db, 1) + "</td>";
html += "<td>" + String(d.err_lora_tx) + "</td>";
html += "<td>" + String(static_cast<uint8_t>(d.last_error)) + "</td>";
html += "<td>" + String(static_cast<uint8_t>(d.last_error)) + " (" + String(fault_text(d.last_error)) + ")</td>";
html += "<td>" + String(d.rx_reject_reason) + " (" +
String(rx_reject_reason_text(static_cast<RxRejectReason>(d.rx_reject_reason))) + ")</td>";
html += "</tr>";
}
html += "</table>";
@@ -170,22 +623,197 @@ static void handle_sender() {
}
static void handle_manual() {
if (!ensure_auth()) {
return;
}
String html = html_header("DD3 Manual");
html += "<ul>";
html += "<li>Energy: total kWh since meter start.</li>";
html += "<li>Power: total active power in W.</li>";
html += "<li>P1/P2/P3: phase power in W.</li>";
html += "<li>bat_v: battery voltage (V), bat_pct: estimated percent.</li>";
html += "<li>Battery: percent with voltage in V.</li>";
html += "<li>RSSI/SNR: LoRa link quality from last packet.</li>";
html += "<li>err_tx: LoRa TX error count; err_last: last error code.</li>";
html += "<li>faults m/d/tx: meter read/decode/tx counters.</li>";
html += "<li>err_tx: sender-side LoRa TX error counter.</li>";
html += "<li>err_last: last error code (0=None, 1=MeterRead, 2=Decode, 3=LoraTx, 4=TimeSync).</li>";
html += "<li>rx_reject: last RX reject reason (0=None, 1=crc_fail, 2=bad_protocol_version, 3=wrong_role, 4=wrong_payload_type, 5=length_mismatch, 6=device_id_mismatch, 7=batch_id_mismatch).</li>";
html += "<li>faults m/d/tx: receiver-side counters (meter read fails, decode fails, LoRa TX fails).</li>";
html += "<li>faults last: last receiver-side error code (same mapping as err_last).</li>";
html += "</ul>";
html += html_footer();
server.send(200, "text/html", html);
}
static void handle_history_start() {
if (!ensure_auth()) {
return;
}
if (!sd_logger_is_ready()) {
server.send(200, "application/json", "{\"ok\":false,\"error\":\"sd_not_ready\"}");
return;
}
if (!time_is_synced()) {
server.send(200, "application/json", "{\"ok\":false,\"error\":\"time_not_synced\"}");
return;
}
String device_id_arg = server.arg("device_id");
String device_id;
if (!sanitize_history_device_id(device_id_arg, device_id)) {
server.send(200, "application/json", "{\"ok\":false,\"error\":\"bad_device_id\"}");
return;
}
uint16_t days = static_cast<uint16_t>(server.arg("days").toInt());
uint16_t res_min = static_cast<uint16_t>(server.arg("res").toInt());
String mode_str = server.arg("mode");
if (device_id.length() == 0 || days == 0 || res_min == 0) {
server.send(200, "application/json", "{\"ok\":false,\"error\":\"bad_params\"}");
return;
}
if (days > SD_HISTORY_MAX_DAYS) {
days = SD_HISTORY_MAX_DAYS;
}
if (res_min < SD_HISTORY_MIN_RES_MIN) {
res_min = SD_HISTORY_MIN_RES_MIN;
}
uint32_t bins = (static_cast<uint32_t>(days) * 24UL * 60UL) / res_min;
if (bins == 0 || bins > SD_HISTORY_MAX_BINS) {
String resp = String("{\"ok\":false,\"error\":\"too_many_bins\",\"max_bins\":") + SD_HISTORY_MAX_BINS + "}";
server.send(200, "application/json", resp);
return;
}
history_reset();
g_history.active = true;
g_history.done = false;
g_history.error = false;
g_history.device_id = device_id;
g_history.mode = (mode_str == "max") ? HistoryMode::Max : HistoryMode::Avg;
g_history.res_sec = static_cast<uint32_t>(res_min) * 60UL;
g_history.bins_count = bins;
g_history.day_index = 0;
g_history.bins = new (std::nothrow) HistoryBin[bins];
if (!g_history.bins) {
g_history.error = true;
g_history.error_msg = "oom";
server.send(200, "application/json", "{\"ok\":false,\"error\":\"oom\"}");
return;
}
for (uint32_t i = 0; i < bins; ++i) {
g_history.bins[i] = {};
}
g_history.end_ts = time_get_utc();
uint32_t span = static_cast<uint32_t>(days) * 86400UL;
g_history.start_ts = g_history.end_ts > span ? (g_history.end_ts - span) : 0;
if (g_history.res_sec > 0) {
g_history.start_ts = (g_history.start_ts / g_history.res_sec) * g_history.res_sec;
}
String resp = String("{\"ok\":true,\"bins\":") + bins + "}";
server.send(200, "application/json", resp);
}
static void handle_history_data() {
if (!ensure_auth()) {
return;
}
String device_id_arg = server.arg("device_id");
String device_id;
if (!sanitize_history_device_id(device_id_arg, device_id)) {
server.send(200, "application/json", "{\"ready\":false,\"error\":\"bad_device_id\"}");
return;
}
if (!g_history.bins || device_id.length() == 0 || device_id != g_history.device_id) {
server.send(200, "application/json", "{\"ready\":false,\"error\":\"no_job\"}");
return;
}
if (g_history.error) {
String resp = String("{\"ready\":false,\"error\":\"") + g_history.error_msg + "\"}";
server.send(200, "application/json", resp);
return;
}
if (g_history.active && !g_history.done) {
uint32_t progress = g_history.bins_count == 0 ? 0 : (g_history.bins_filled * 100UL / g_history.bins_count);
String resp = String("{\"ready\":false,\"progress\":") + progress + "}";
server.send(200, "application/json", resp);
return;
}
server.setContentLength(CONTENT_LENGTH_UNKNOWN);
server.send(200, "application/json", "");
server.sendContent("{\"ready\":true,\"series\":[");
bool first = true;
for (uint32_t i = 0; i < g_history.bins_count; ++i) {
const HistoryBin &bin = g_history.bins[i];
if (!first) {
server.sendContent(",");
}
first = false;
float value = NAN;
if (bin.count > 0) {
value = (g_history.mode == HistoryMode::Avg) ? (bin.value / static_cast<float>(bin.count)) : bin.value;
}
if (bin.count == 0) {
server.sendContent(String("[") + bin.ts + ",null]");
} else {
server.sendContent(String("[") + bin.ts + "," + String(value, 2) + "]");
}
}
server.sendContent("]}");
}
static void handle_sd_download() {
if (!ensure_auth()) {
return;
}
if (!sd_logger_is_ready()) {
server.send(404, "text/plain", "SD not ready");
return;
}
String path = server.arg("path");
String error;
if (!sanitize_sd_download_path(path, error)) {
if (SERIAL_DEBUG_MODE) {
Serial.printf("sd: reject path '%s' reason=%s\n", path.c_str(), error.c_str());
}
server.send(400, "text/plain", "Invalid path");
return;
}
File f = SD.open(path.c_str(), FILE_READ);
if (!f) {
server.send(404, "text/plain", "Not found");
return;
}
size_t size = f.size();
String filename = path.substring(path.lastIndexOf('/') + 1);
bool name_clean = true;
(void)name_clean;
String safe_name = sanitize_download_filename(filename, name_clean);
String cd = "attachment; filename=\"" + safe_name + "\"; filename*=UTF-8''" + url_encode_component(safe_name);
server.sendHeader("Content-Disposition", cd);
server.setContentLength(size);
const char *content_type = "application/octet-stream";
if (filename.endsWith(".csv")) {
content_type = "text/csv";
} else if (filename.endsWith(".txt")) {
content_type = "text/plain";
}
server.send(200, content_type, "");
WiFiClient client = server.client();
uint8_t buf[512];
while (f.available()) {
size_t n = f.read(buf, sizeof(buf));
if (n == 0) {
break;
}
client.write(buf, n);
delay(0);
}
f.close();
}
void web_server_set_config(const WifiMqttConfig &config) {
g_config = config;
g_web_user = config.web_user;
g_web_pass = config.web_pass;
}
void web_server_set_sender_faults(const FaultCounters *faults, const FaultType *last_errors) {
@@ -213,6 +841,9 @@ void web_server_begin_ap(const SenderStatus *statuses, uint8_t count) {
server.on("/", handle_root);
server.on("/manual", handle_manual);
server.on("/history/start", handle_history_start);
server.on("/history/data", handle_history_data);
server.on("/sd/download", handle_sd_download);
server.on("/wifi", HTTP_GET, handle_wifi_get);
server.on("/wifi", HTTP_POST, handle_wifi_post);
server.on("/sender/", handle_sender);
@@ -234,6 +865,9 @@ void web_server_begin_sta(const SenderStatus *statuses, uint8_t count) {
server.on("/", handle_root);
server.on("/manual", handle_manual);
server.on("/sender/", handle_sender);
server.on("/history/start", handle_history_start);
server.on("/history/data", handle_history_data);
server.on("/sd/download", handle_sd_download);
server.on("/wifi", HTTP_GET, handle_wifi_get);
server.on("/wifi", HTTP_POST, handle_wifi_post);
server.onNotFound([]() {
@@ -247,5 +881,6 @@ void web_server_begin_sta(const SenderStatus *statuses, uint8_t count) {
}
void web_server_loop() {
history_tick();
server.handleClient();
}

View File

@@ -1,4 +1,5 @@
#include "wifi_manager.h"
#include "config.h"
#include <WiFi.h>
#include <esp_wifi.h>
@@ -10,9 +11,6 @@ void wifi_manager_init() {
bool wifi_load_config(WifiMqttConfig &config) {
config.valid = prefs.getBool("valid", false);
if (!config.valid) {
return false;
}
config.ssid = prefs.getString("ssid", "");
config.password = prefs.getString("pass", "");
config.mqtt_host = prefs.getString("mqhost", "");
@@ -21,6 +19,11 @@ bool wifi_load_config(WifiMqttConfig &config) {
config.mqtt_pass = prefs.getString("mqpass", "");
config.ntp_server_1 = prefs.getString("ntp1", "pool.ntp.org");
config.ntp_server_2 = prefs.getString("ntp2", "time.nist.gov");
config.web_user = prefs.getString("webuser", WEB_AUTH_DEFAULT_USER);
config.web_pass = prefs.getString("webpass", WEB_AUTH_DEFAULT_PASS);
if (!config.valid) {
return false;
}
return config.ssid.length() > 0 && config.mqtt_host.length() > 0;
}
@@ -34,6 +37,8 @@ bool wifi_save_config(const WifiMqttConfig &config) {
prefs.putString("mqpass", config.mqtt_pass);
prefs.putString("ntp1", config.ntp_server_1);
prefs.putString("ntp2", config.ntp_server_2);
prefs.putString("webuser", config.web_user);
prefs.putString("webpass", config.web_pass);
return true;
}

View File

@@ -0,0 +1,37 @@
#include <Arduino.h>
#include <unity.h>
#include "html_util.h"
static void test_html_escape_basic() {
TEST_ASSERT_EQUAL_STRING("", html_escape("").c_str());
TEST_ASSERT_EQUAL_STRING("plain", html_escape("plain").c_str());
TEST_ASSERT_EQUAL_STRING("a&amp;b", html_escape("a&b").c_str());
TEST_ASSERT_EQUAL_STRING("&lt;tag&gt;", html_escape("<tag>").c_str());
TEST_ASSERT_EQUAL_STRING("&quot;hi&quot;", html_escape("\"hi\"").c_str());
TEST_ASSERT_EQUAL_STRING("it&#39;s", html_escape("it's").c_str());
TEST_ASSERT_EQUAL_STRING("&amp;&lt;&gt;&quot;&#39;", html_escape("&<>\"'").c_str());
}
static void test_sanitize_device_id() {
String out;
TEST_ASSERT_TRUE(sanitize_device_id("F19C", out));
TEST_ASSERT_EQUAL_STRING("dd3-F19C", out.c_str());
TEST_ASSERT_TRUE(sanitize_device_id("dd3-f19c", out));
TEST_ASSERT_EQUAL_STRING("dd3-F19C", out.c_str());
TEST_ASSERT_FALSE(sanitize_device_id("F19G", out));
TEST_ASSERT_FALSE(sanitize_device_id("dd3-12", out));
TEST_ASSERT_FALSE(sanitize_device_id("dd3-12345", out));
TEST_ASSERT_FALSE(sanitize_device_id("../F19C", out));
TEST_ASSERT_FALSE(sanitize_device_id("dd3-%2f", out));
TEST_ASSERT_FALSE(sanitize_device_id("dd3-12/3", out));
TEST_ASSERT_FALSE(sanitize_device_id("dd3-12\\3", out));
}
void setup() {
UNITY_BEGIN();
RUN_TEST(test_html_escape_basic);
RUN_TEST(test_sanitize_device_id);
UNITY_END();
}
void loop() {}