Files
DD3-LoRa-Bridge-MultiSender/src/power_manager.cpp
acidburns cd4c99f125 Calibrate battery ADC and document LiPo curve
- Add BATTERY_CAL config and debug logging for raw ADC samples
- Use LiPo voltage curve (4.2V full, 2.9V empty) for % mapping
- Document battery calibration, curve, and debug output in README
2026-02-03 22:12:48 +01:00

124 lines
2.9 KiB
C++

#include "power_manager.h"
#include "config.h"
#include <WiFi.h>
#include <esp_wifi.h>
#include <esp_bt.h>
#include <esp_sleep.h>
static constexpr float BATTERY_DIVIDER = 2.0f;
static constexpr float ADC_REF_V = 3.3f;
void power_sender_init() {
setCpuFrequencyMhz(80);
WiFi.mode(WIFI_OFF);
esp_wifi_stop();
esp_wifi_deinit();
btStop();
analogReadResolution(12);
pinMode(PIN_BAT_ADC, INPUT);
}
void power_receiver_init() {
btStop();
analogReadResolution(12);
pinMode(PIN_BAT_ADC, INPUT);
}
void power_configure_unused_pins_sender() {
// Board-specific: only touch pins that are known unused and safe on TTGO LoRa32 v1.6.1
const uint8_t pins[] = {32, 33};
for (uint8_t pin : pins) {
pinMode(pin, INPUT_PULLDOWN);
}
}
void read_battery(MeterData &data) {
uint32_t sum = 0;
uint16_t samples[5] = {};
for (uint8_t i = 0; i < 5; ++i) {
samples[i] = analogRead(PIN_BAT_ADC);
sum += samples[i];
}
float avg = static_cast<float>(sum) / 5.0f;
float v = (avg / 4095.0f) * ADC_REF_V * BATTERY_DIVIDER * BATTERY_CAL;
if (SERIAL_DEBUG_MODE) {
Serial.printf("bat_adc: %u %u %u %u %u avg=%.1f v=%.3f\n",
samples[0], samples[1], samples[2], samples[3], samples[4],
static_cast<double>(avg), static_cast<double>(v));
}
data.battery_voltage_v = v;
data.battery_percent = battery_percent_from_voltage(v);
}
uint8_t battery_percent_from_voltage(float voltage_v) {
if (isnan(voltage_v)) {
return 0;
}
struct LutPoint {
float v;
uint8_t pct;
};
static const LutPoint kCurve[] = {
{4.20f, 100},
{4.15f, 95},
{4.11f, 90},
{4.08f, 85},
{4.02f, 80},
{3.98f, 75},
{3.95f, 70},
{3.91f, 60},
{3.87f, 50},
{3.85f, 45},
{3.84f, 40},
{3.82f, 35},
{3.80f, 30},
{3.77f, 25},
{3.75f, 20},
{3.73f, 15},
{3.70f, 10},
{3.65f, 5},
{3.60f, 2},
{2.90f, 0},
};
if (voltage_v >= kCurve[0].v) {
return kCurve[0].pct;
}
if (voltage_v <= kCurve[sizeof(kCurve) / sizeof(kCurve[0]) - 1].v) {
return 0;
}
for (size_t i = 0; i + 1 < sizeof(kCurve) / sizeof(kCurve[0]); ++i) {
const LutPoint &hi = kCurve[i];
const LutPoint &lo = kCurve[i + 1];
if (voltage_v <= hi.v && voltage_v >= lo.v) {
float span = hi.v - lo.v;
if (span <= 0.0f) {
return lo.pct;
}
float t = (voltage_v - lo.v) / span;
float pct = lo.pct + t * (hi.pct - lo.pct);
if (pct < 0.0f) {
pct = 0.0f;
}
if (pct > 100.0f) {
pct = 100.0f;
}
return static_cast<uint8_t>(pct + 0.5f);
}
}
return 0;
}
void light_sleep_ms(uint32_t ms) {
if (ms == 0) {
return;
}
esp_sleep_enable_timer_wakeup(static_cast<uint64_t>(ms) * 1000ULL);
esp_light_sleep_start();
}
void go_to_deep_sleep(uint32_t seconds) {
esp_sleep_enable_timer_wakeup(static_cast<uint64_t>(seconds) * 1000000ULL);
esp_deep_sleep_start();
}