PlantCtrl/esp32/src/main.cpp
2021-11-14 13:51:52 +01:00

1062 lines
30 KiB
C++

/** \addtogroup Controller
* @{
*
* @file main.cpp
* @author Ollo
* @brief PlantControl
* @version 0.1
* @date 2020-05-01
*
* @copyright Copyright (c) 2020
*/
/******************************************************************************
* INCLUDES
******************************************************************************/
#include "LogDefines.h"
#include "FileUtils.h"
#include "TimeUtils.h"
#include "PlantCtrl.h"
#include "ControllerConfiguration.h"
#include "HomieConfiguration.h"
#include "DallasTemperature.h"
#include <Homie.h>
#include "time.h"
#include "esp_sleep.h"
#include "RunningMedian.h"
#include "WakeReason.h"
#include <stdint.h>
#include <math.h>
#include <OneWire.h>
#include "DS2438.h"
#include "soc/soc.h"
#include "soc/rtc_cntl_reg.h"
#include <Wire.h>
#include <VL53L0X.h>
#include "driver/pcnt.h"
#include "MQTTUtils.h"
/******************************************************************************
* DEFINES
******************************************************************************/
#define AMOUNT_SENOR_QUERYS 8
#define MAX_TANK_DEPTH 2000
/******************************************************************************
* FUNCTION PROTOTYPES
******************************************************************************/
int determineNextPump(bool lowLight);
void plantcontrol();
void readPowerSwitchedSensors();
bool determineTimedLightState(bool lowLight);
/******************************************************************************
* NON VOLATILE VARIABLES in DEEP SLEEP
******************************************************************************/
#if defined(TIMED_LIGHT_PIN)
RTC_DATA_ATTR bool timedLightOn = false; /**< allow fast recovery after poweron */
RTC_DATA_ATTR bool timedLightLowVoltageTriggered = false; /**remember if it was shut down due to voltage level */
#endif // TIMED_LIGHT_PIN
RTC_DATA_ATTR long rtcLastWateringPlant[MAX_PLANTS] = {0};
RTC_DATA_ATTR long consecutiveWateringPlant[MAX_PLANTS] = {0};
/******************************************************************************
* LOCAL VARIABLES
******************************************************************************/
bool volatile mDownloadMode = false; /**< Controller must not sleep */
bool volatile mSensorsRead = false; /**< Sensors are read without Wifi or MQTT */
int volatile pumpToRun = -1; /** pump to run at the end of the cycle */
int volatile selfTestPumpRun = -1; /** pump to run at the end of the cycle */
bool mConfigured = false;
long nextBlink = 0; /**< Time needed in main loop to support expected blink code */
RunningMedian waterRawSensor = RunningMedian(5);
float mSolarVoltage = 0.0f; /**< Voltage from solar panels */
unsigned long setupFinishedTimestamp;
bool pumpStarted = false;
long pumpTarget = -1;
#ifdef FLOWMETER_PIN
long pumpTargetMl = -1;
#endif
/*************************** Hardware abstraction *****************************/
OneWire oneWire(SENSOR_ONEWIRE);
DallasTemperature sensors(&oneWire);
DS2438 battery(&oneWire, 0.0333333f, AMOUNT_SENOR_QUERYS);
VL53L0X tankSensor;
Plant mPlants[MAX_PLANTS] = {
Plant(SENSOR_PLANT0, OUTPUT_PUMP0, 0, &plant0, &mSetting0),
Plant(SENSOR_PLANT1, OUTPUT_PUMP1, 1, &plant1, &mSetting1),
Plant(SENSOR_PLANT2, OUTPUT_PUMP2, 2, &plant2, &mSetting2),
Plant(SENSOR_PLANT3, OUTPUT_PUMP3, 3, &plant3, &mSetting3),
Plant(SENSOR_PLANT4, OUTPUT_PUMP4, 4, &plant4, &mSetting4),
Plant(SENSOR_PLANT5, OUTPUT_PUMP5, 5, &plant5, &mSetting5),
Plant(SENSOR_PLANT6, OUTPUT_PUMP6, 6, &plant6, &mSetting6)};
/******************************************************************************
* LOCAL FUNCTIONS
******************************************************************************/
void espDeepSleep(bool afterPump = false)
{
if (mDownloadMode)
{
log(LOG_LEVEL_DEBUG, "abort deepsleep, DownloadMode active", LOG_DEBUG_CODE);
return;
}
if (aliveWasRead())
{
for (int i = 0; i < 10; i++)
{
long cTime = getCurrentTime();
if (cTime < 100000)
{
delay(100);
}
else
{
break;
}
}
if (getCurrentTime() < 100000)
{
log(LOG_LEVEL_DEBUG, "NTP timeout before deepsleep", LOG_DEBUG_CODE);
}
}
//allo hold for all digital pins
gpio_deep_sleep_hold_en();
esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_PERIPH, ESP_PD_OPTION_OFF);
esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_SLOW_MEM, ESP_PD_OPTION_ON);
esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_FAST_MEM, ESP_PD_OPTION_ON);
esp_sleep_pd_config(ESP_PD_DOMAIN_XTAL, ESP_PD_OPTION_ON);
#if defined(TIMED_LIGHT_PIN)
gpio_hold_en(TIMED_LIGHT_PIN);
#endif // TIMED_LIGHT_PIN
long secondsToSleep = -1;
if (afterPump)
{
log(LOG_LEVEL_INFO, "AfterPump Cycle Resume", LOG_SLEEP_CYCLE);
secondsToSleep = 1;
}
else
{
if (mSolarVoltage < SOLAR_CHARGE_MIN_VOLTAGE)
{
log(LOG_LEVEL_INFO, String(String(mSolarVoltage) + "V! Low light -> deepSleepNight"), LOG_SLEEP_NIGHT);
secondsToSleep = deepSleepNightTime.get();
}
else
{
log(LOG_LEVEL_INFO, "Sunny -> deepSleep", LOG_SLEEP_DAY);
secondsToSleep = deepSleepTime.get();
}
}
esp_sleep_enable_timer_wakeup((secondsToSleep * 1000U * 1000U));
if (aliveWasRead())
{
delay(1000);
Homie.prepareToSleep();
}
else
{
esp_deep_sleep_start();
}
}
//requires homie being started
void readOneWireSensors()
{
for (uint8_t i = 0; i < sensors.getDeviceCount(); i++)
{
uint8_t ds18b20Address[8];
bool valid = false;
float temp = -127;
for (int retry = 0; retry < AMOUNT_SENOR_QUERYS && !valid; retry++)
{
bool validAddress = sensors.getAddress(ds18b20Address, i);
if (validAddress && sensors.validFamily(ds18b20Address))
{
temp = sensors.getTempC(ds18b20Address);
if (temp != -127)
{
valid = true;
}
else
{
delay(10);
}
}
}
if (!valid)
{
//wrong family or crc errors on each retry
continue;
}
char buf[(sizeof(ds18b20Address) * 2)+1]; /* additional byte for trailing terminator */
snprintf(buf, sizeof(buf), "%.2X%.2X%.2X%.2X%.2X%.2X%.2X%.2X",
ds18b20Address[0],
ds18b20Address[1],
ds18b20Address[2],
ds18b20Address[3],
ds18b20Address[4],
ds18b20Address[5],
ds18b20Address[6],
ds18b20Address[7]);
if (valid)
{
Serial << "DS18S20 Temperatur " << String(buf) << " : " << temp << " °C " << endl;
if (strcmp(lipoSensorAddr.get(), buf) == 0)
{
mqttWrite(&sensorTemp, TEMPERATUR_SENSOR_LIPO, String(temp));
Serial << "Lipo Temperatur " << temp << " °C " << endl;
}
if (strcmp(waterSensorAddr.get(), buf) == 0)
{
mqttWrite(&sensorTemp, TEMPERATUR_SENSOR_WATER, String(temp));
Serial << "Water Temperatur " << temp << " °C " << endl;
}
/* Always send the sensor address with the temperatur value */
mqttWrite(&sensorTemp, String(buf), String(temp));
}
else
{
Serial << "DS18S20 sensor " << String(buf) << " could not be read " << temp << endl;
}
}
battery.updateMultiple();
mSolarVoltage = battery.getVoltage(BATTSENSOR_INDEX_SOLAR) * SOLAR_VOLT_FACTOR;
Serial.flush();
}
/**
* @brief Sensors, that are connected to GPIOs, mandatory for WIFI.
* These sensors (ADC2) can only be read when no Wifi is used.
*/
void readPowerSwitchedSensors()
{
digitalWrite(OUTPUT_ENABLE_SENSOR, HIGH);
delay(50);
for (int i = 0; i < MAX_PLANTS; i++)
{
mPlants[i].startMoistureMeasurement();
}
delay(MOISTURE_MEASUREMENT_DURATION);
for (int i = 0; i < MAX_PLANTS; i++)
{
mPlants[i].stopMoistureMeasurement();
}
for (int i = 0; i < MAX_PLANTS; i++)
{
Serial << "Plant " << i << " measurement: " << mPlants[i].getCurrentMoisture() << " hz" << endl;
}
waterRawSensor.clear();
Wire.setPins(SENSOR_TANK_TRG, SENSOR_TANK_ECHO);
Wire.begin();
tankSensor.setTimeout(500);
long start = millis();
bool distanceReady = false;
while (start + 500 > millis())
{
if (tankSensor.init())
{
distanceReady = true;
break;
}
else
{
delay(20);
}
}
if (distanceReady)
{
tankSensor.setSignalRateLimit(0.1);
// increase laser pulse periods (defaults are 14 and 10 PCLKs)
tankSensor.setVcselPulsePeriod(VL53L0X::VcselPeriodPreRange, 18);
tankSensor.setVcselPulsePeriod(VL53L0X::VcselPeriodFinalRange, 14);
tankSensor.setMeasurementTimingBudget(200000);
for (int readCnt = 0; readCnt < 5; readCnt++)
{
if (!tankSensor.timeoutOccurred())
{
uint16_t distance = tankSensor.readRangeSingleMillimeters();
if (distance < MAX_TANK_DEPTH)
{
waterRawSensor.add(distance);
}
}
delay(10);
}
Serial << "Distance sensor " << waterRawSensor.getMedian() << " mm" << endl;
}
else
{
log(LOG_LEVEL_WARN, LOG_TANKSENSOR_FAIL_DETECT, LOG_TANKSENSOR_FAIL_DETECT_CODE);
}
/* deactivate the sensors */
digitalWrite(OUTPUT_ENABLE_SENSOR, LOW);
}
void onHomieEvent(const HomieEvent &event)
{
switch (event.type)
{
case HomieEventType::READY_TO_SLEEP:
esp_deep_sleep_start();
break;
case HomieEventType::SENDING_STATISTICS:
break;
case HomieEventType::MQTT_READY:
if (mSensorsRead)
{
Serial.printf("Timeout occured... too late!\r\n");
return;
}
mSensorsRead = true; // MQTT is working, deactivate timeout logic
configTime(UTC_OFFSET_DE, UTF_OFFSET_DE_DST, ntpServer.get());
startMQTTRoundtripTest();
break;
case HomieEventType::OTA_STARTED:
for (int i = 0; i < MAX_PLANTS; i++)
{
mPlants[i].deactivatePump();
}
WRITE_PERI_REG(RTC_CNTL_BROWN_OUT_REG, 0);
digitalWrite(OUTPUT_ENABLE_PUMP, HIGH);
delay(100);
WRITE_PERI_REG(RTC_CNTL_BROWN_OUT_REG, 1);
mDownloadMode = true;
break;
case HomieEventType::OTA_SUCCESSFUL:
digitalWrite(OUTPUT_ENABLE_SENSOR, LOW);
digitalWrite(OUTPUT_ENABLE_PUMP, LOW);
ESP.restart();
break;
default:
break;
}
}
int determineNextPump(bool isLowLight)
{
int pumpToUse = -1;
for (int i = 0; i < MAX_PLANTS; i++)
{
bool wateralarm = consecutiveWateringPlant[i] >= pumpIneffectiveWarning.get();
if (wateralarm)
{
log(LOG_LEVEL_ERROR, String(String(i) + " Plant still dry after " + String(consecutiveWateringPlant[i]) + " watering attempts"), LOG_PUMP_INEFFECTIVE);
}
Plant plant = mPlants[i];
if (!plant.isPumpTriggerActive())
{
plant.publishState("deactivated");
log(LOG_LEVEL_DEBUG, String(String(i) + " Skip deactivated pump"), LOG_DEBUG_CODE);
continue;
}
if ((rtcLastWateringPlant[i] + plant.getCooldownInSeconds()) > getCurrentTime())
{
if (wateralarm)
{
plant.publishState("cooldown+alarm");
}
else
{
plant.publishState("cooldown");
}
log(LOG_LEVEL_DEBUG, String(String(i) + " Skipping due to cooldown " + String(rtcLastWateringPlant[i] + plant.getCooldownInSeconds())), LOG_DEBUG_CODE);
continue;
}
if (!isLowLight && plant.isAllowedOnlyAtLowLight())
{
if (wateralarm)
{
plant.publishState("sunny+alarm");
}
else
{
plant.publishState("sunny");
}
log(LOG_LEVEL_DEBUG, String(String(i) + " No pump required: due to light"), LOG_DEBUG_CODE);
continue;
}
if (!plant.isHydroponic())
{
if (equalish(plant.getCurrentMoisture(), MISSING_SENSOR))
{
plant.publishState("nosensor");
log(LOG_LEVEL_ERROR, String(String(i) + " No pump possible: missing sensor"), LOG_MISSING_PUMP);
continue;
}
}
if (plant.isPumpRequired())
{
/* Handle e.g. start = 21, end = 8 */
if (plant.isHydroponic() || (((plant.getHoursStart() > plant.getHoursEnd()) &&
(getCurrentHour() >= plant.getHoursStart() || getCurrentHour() <= plant.getHoursEnd())) ||
/* Handle e.g. start = 8, end = 21 */
((plant.getHoursStart() < plant.getHoursEnd()) &&
(getCurrentHour() >= plant.getHoursStart() && getCurrentHour() <= plant.getHoursEnd())) ||
/* no time from NTP received */
(getCurrentTime() < 10000)))
{
if (wateralarm)
{
plant.publishState("active+alarm");
}
else
{
plant.publishState("active");
}
if (!plant.isHydroponic())
{
consecutiveWateringPlant[i]++;
}
log(LOG_LEVEL_DEBUG, String(String(i) + " Requested pumping"), LOG_DEBUG_CODE);
pumpToUse = i;
return pumpToUse;
}
else
{
if (wateralarm)
{
plant.publishState("after-work+alarm");
}
else
{
plant.publishState("after-work");
}
log(LOG_LEVEL_DEBUG, String(String(i) + " ignored due to time boundary: " + String(plant.getHoursStart()) + " to " + String(plant.getHoursEnd()) + " ( current " + String(getCurrentHour()) + " )"), LOG_DEBUG_CODE);
}
continue;
}
else
{
plant.publishState("wet");
//plant was detected as wet, remove consecutive count
consecutiveWateringPlant[i] = 0;
}
}
return -1;
}
/**
* @brief Handle Mqtt commands to keep controller alive
*
* @param range multiple transmitted values (not used for this function)
* @param value single value
* @return true when the command was parsed and executed succuessfully
* @return false on errors when parsing the request
*/
bool aliveHandler(const HomieRange &range, const String &value)
{
if (range.isRange)
{
return false; // only one controller is present
}
if (value.equals("ON") || value.equals("On") || value.equals("1"))
{
mDownloadMode = true;
}
else
{
if (mDownloadMode)
{
esp_restart();
}
mDownloadMode = false;
}
return true;
}
bool notStarted = true;
void homieLoop()
{
if (aliveWasRead() && notStarted)
{
Serial.println("received alive & mqtt is ready");
notStarted = false;
plantcontrol();
}
}
bool switch1(const HomieRange &range, const String &value)
{
return mPlants[0].switchHandler(range, value);
}
bool switch2(const HomieRange &range, const String &value)
{
return mPlants[1].switchHandler(range, value);
}
bool switch3(const HomieRange &range, const String &value)
{
return mPlants[2].switchHandler(range, value);
}
bool switch4(const HomieRange &range, const String &value)
{
return mPlants[3].switchHandler(range, value);
}
bool switch5(const HomieRange &range, const String &value)
{
return mPlants[4].switchHandler(range, value);
}
bool switch6(const HomieRange &range, const String &value)
{
return mPlants[5].switchHandler(range, value);
}
bool switch7(const HomieRange &range, const String &value)
{
return mPlants[6].switchHandler(range, value);
}
void initPumpLogic()
{
//set targets
#ifdef FLOWMETER_PIN
pumpTargetMl = mPlants[pumpToRun].getPumpDuration();
//0-6 are used for moisture measurment
pcnt_unit_t unit = (pcnt_unit_t)(PCNT_UNIT_7);
pcnt_config_t pcnt_config = {}; // Instancia PCNT config
pcnt_config.pulse_gpio_num = FLOWMETER_PIN; // Configura GPIO para entrada dos pulsos
pcnt_config.ctrl_gpio_num = PCNT_PIN_NOT_USED; // Configura GPIO para controle da contagem
pcnt_config.unit = unit; // Unidade de contagem PCNT - 0
pcnt_config.channel = PCNT_CHANNEL_0; // Canal de contagem PCNT - 0
pcnt_config.counter_h_lim = INT16_MAX; // Limite maximo de contagem - 20000
pcnt_config.pos_mode = PCNT_COUNT_DIS; // Incrementa contagem na subida do pulso
pcnt_config.neg_mode = PCNT_COUNT_INC; // Incrementa contagem na descida do pulso
pcnt_config.lctrl_mode = PCNT_MODE_KEEP; // PCNT - modo lctrl desabilitado
pcnt_config.hctrl_mode = PCNT_MODE_KEEP; // PCNT - modo hctrl - se HIGH conta incrementando
pcnt_unit_config(&pcnt_config); // Configura o contador PCNT
pcnt_counter_clear(unit); // Zera o contador PCNT
pcnt_counter_resume(unit);
#else
pumpTarget = millis() + (mPlants[pumpToRun].getPumpDuration() * 1000);
log(LOG_LEVEL_INFO, "Starting pump " + String(pumpToRun) + " for " + String(mPlants[pumpToRun].getPumpDuration()) + "s", LOG_PUMP_STARTED_CODE);
#endif
//enable power
WRITE_PERI_REG(RTC_CNTL_BROWN_OUT_REG, 0);
digitalWrite(OUTPUT_ENABLE_PUMP, HIGH);
delay(100);
WRITE_PERI_REG(RTC_CNTL_BROWN_OUT_REG, 1);
mPlants[pumpToRun].activatePump();
}
void pumpActiveLoop()
{
bool targetReached = false;
if (!pumpStarted)
{
initPumpLogic();
pumpStarted = true;
rtcLastWateringPlant[pumpToRun] = getCurrentTime();
}
#ifdef FLOWMETER_PIN
int16_t pulses;
pcnt_unit_t unit = (pcnt_unit_t)(PCNT_UNIT_7);
esp_err_t result = pcnt_get_counter_value(unit, &pulses);
if (result != ESP_OK)
{
log(LOG_LEVEL_ERROR, LOG_HARDWARECOUNTER_ERROR_MESSAGE, LOG_HARDWARECOUNTER_ERROR_CODE);
targetReached = true;
}
else
{
/**FLOWMETER_FLOWFACTOR * (L/Min) = F;
given 1L/min -> FLOWMETER_FLOWFACTOR*60 pulses per liter
-> 1000/result -> ml pro pulse;
-> result * pulses ->*/
long pumped = (FLOWMETER_FLOWFACTOR * 60) * pulses / 1000;
if (pumped >= pumpTargetMl)
{
targetReached = true;
pcnt_counter_pause(unit);
}
mPlants[pumpToRun].setProperty("waterusage").send(String(pumped));
}
#else
if (millis() > pumpTarget)
{
targetReached = true;
}
#endif
if (targetReached)
{
//disable all
digitalWrite(OUTPUT_ENABLE_PUMP, LOW);
for (int i = 0; i < MAX_PLANTS; i++)
{
mPlants[i].deactivatePump();
}
//disable loop, to prevent multi processing
pumpStarted = false;
//if runtime is larger than cooldown, else it would run continously
rtcLastWateringPlant[pumpToRun] = getCurrentTime();
espDeepSleep(true);
}
}
void safeSetup()
{
throw std::runtime_error("Shit happened");
/* reduce power consumption */
setCpuFrequencyMhz(80);
Serial.begin(115200);
Serial << "Wifi mode set to " << WIFI_OFF << " to allow analog2 useage " << endl;
WiFi.mode(WIFI_OFF);
Serial.flush();
//restore state before releasing pin, to prevent flickering
#if defined(TIMED_LIGHT_PIN)
pinMode(TIMED_LIGHT_PIN, OUTPUT);
digitalWrite(TIMED_LIGHT_PIN, timedLightOn);
gpio_hold_dis(TIMED_LIGHT_PIN);
#endif // TIMED_LIGHT_PIN
/* Intialize Plant */
for (int i = 0; i < MAX_PLANTS; i++)
{
mPlants[i].init();
}
// read button
pinMode(BUTTON, INPUT);
// Power pins
pinMode(OUTPUT_ENABLE_PUMP, OUTPUT);
digitalWrite(OUTPUT_ENABLE_PUMP, LOW);
pinMode(OUTPUT_ENABLE_SENSOR, OUTPUT);
if (HomieInternals::MAX_CONFIG_SETTING_SIZE < MAX_CONFIG_SETTING_ITEMS)
{
//increase the config settings
Serial << "Limits.hpp is not adjusted, please search for this string and increase" << endl;
return;
}
if (HomieInternals::MAX_JSON_CONFIG_FILE_SIZE < MAX_JSON_CONFIG_FILE_SIZE_CUSTOM)
{
//increase the config settings
Serial << "Limits.hpp is not adjusted, please search for this string and increase" << endl;
return;
}
/************************* Start One-Wire bus ***************/
int tempInitStartTime = millis();
uint8_t sensorCount = 0U;
/* Required to read the temperature at least once */
while ((sensorCount == 0 || !battery.isFound()) && millis() < tempInitStartTime + TEMPERATUR_TIMEOUT)
{
sensors.begin();
battery.begin();
sensorCount = sensors.getDS18Count();
delay(50);
}
Serial << "DS18S20 count: " << sensorCount << " found in " << (millis() - tempInitStartTime) << " ms" << endl;
Serial.flush();
/* Measure temperature TODO idea: move this into setup */
if (sensorCount > 0)
{
//sensors.setResolution(DS18B20_RESOLUTION);
sensors.requestTemperatures();
}
Serial << "Reading sensors start" << endl;
Serial.flush();
readPowerSwitchedSensors();
Serial << "Reading sensors end" << endl;
Serial.flush();
/************************* Start Homie Framework ***************/
Homie_setFirmware("PlantControl", FIRMWARE_VERSION);
Homie.disableLedFeedback();
Homie_setBrand("PlantControl");
// Set default values
//in seconds
deepSleepTime.setDefaultValue(600).setValidator([](long candidate)
{ return (candidate > 0) && (candidate < (60 * 60 * 2) /** 2h max sleep */); });
deepSleepNightTime.setDefaultValue(600);
ntpServer.setDefaultValue("pool.ntp.org");
/* waterLevelMax 1000 */ /* 100cm in mm */
waterLevelMin.setDefaultValue(50); /* 5cm in mm */
waterLevelWarn.setDefaultValue(500); /* 50cm in mm */
waterLevelVol.setDefaultValue(5000); /* 5l in ml */
lipoSensorAddr.setDefaultValue("");
waterSensorAddr.setDefaultValue("");
pumpIneffectiveWarning.setDefaultValue(5).setValidator([](long candidate)
{ return (candidate > 0) && (candidate < (20)); });
#if defined(TIMED_LIGHT_PIN)
timedLightStart.setDefaultValue(18).setValidator([](long candidate)
{ return (candidate > 0) && (candidate < (25)); });
timedLightEnd.setDefaultValue(23).setValidator([](long candidate)
{ return (candidate > 0) && (candidate < (24)); });
timedLightOnlyWhenDark.setDefaultValue(true);
timedLightVoltageCutoff.setDefaultValue(3.8).setValidator([](double candidate)
{ return (candidate > 3.3) && (candidate < (4.2)); });
#endif // TIMED_LIGHT_PIN
Homie.setLoopFunction(homieLoop);
Homie.onEvent(onHomieEvent);
Homie.setup();
mConfigured = Homie.isConfigured();
if (mConfigured)
{
for (int i = 0; i < MAX_PLANTS; i++)
{
mPlants[i].advertise();
}
mPlants[0].setSwitchHandler(switch1);
mPlants[1].setSwitchHandler(switch2);
mPlants[2].setSwitchHandler(switch3);
mPlants[3].setSwitchHandler(switch4);
mPlants[4].setSwitchHandler(switch5);
mPlants[5].setSwitchHandler(switch6);
mPlants[6].setSwitchHandler(switch7);
sensorTemp.advertise(TEMPERATUR_SENSOR_LIPO)
.setName(TEMPERATURE_NAME)
.setDatatype(NUMBER_TYPE)
.setUnit(TEMPERATURE_UNIT);
sensorTemp.advertise(TEMPERATUR_SENSOR_WATER)
.setName(TEMPERATURE_NAME)
.setDatatype(NUMBER_TYPE)
.setUnit(TEMPERATURE_UNIT);
sensorTemp.advertise(TEMPERATUR_SENSOR_CHIP)
.setName(TEMPERATURE_NAME)
.setDatatype(NUMBER_TYPE)
.setUnit(TEMPERATURE_UNIT);
sensorLipo.advertise("percent")
.setName("Percent")
.setDatatype(NUMBER_TYPE)
.setUnit("%");
sensorLipo.advertise("volt")
.setName("Volt")
.setDatatype(NUMBER_TYPE)
.setUnit("V");
sensorSolar.advertise("percent")
.setName("Percent")
.setDatatype(NUMBER_TYPE)
.setUnit("%");
sensorSolar.advertise("volt")
.setName("Volt")
.setDatatype(NUMBER_TYPE)
.setUnit("V");
sensorWater.advertise("remaining").setDatatype(NUMBER_TYPE).setUnit("%");
}
else
{
if (doesFileExist(CONFIG_FILE))
{
printFile(CONFIG_FILE);
}
if (doesFileExist(CONFIG_FILE_BACKUP))
{
printFile(CONFIG_FILE_BACKUP);
bool restoredConfig = copyFile(CONFIG_FILE_BACKUP, CONFIG_FILE);
if (restoredConfig)
{
deleteFile(CONFIG_FILE_BACKUP);
espDeepSleep();
return;
}
}
readOneWireSensors();
//prevent BOD to be paranoid
WRITE_PERI_REG(RTC_CNTL_BROWN_OUT_REG, 0);
digitalWrite(OUTPUT_ENABLE_PUMP, HIGH);
delay(100);
WRITE_PERI_REG(RTC_CNTL_BROWN_OUT_REG, 1);
Serial.println("Initial Setup. Start Accesspoint...");
mDownloadMode = true;
}
stayAlive.advertise("alive").setName("Alive").setDatatype(NUMBER_TYPE).settable(aliveHandler);
setupFinishedTimestamp = millis();
}
/**
* @brief Startup function
* Is called once, the controller is started
*/
void setup()
{
try
{
safeSetup();
}
catch (const std::exception &e)
{
Serial.printf("Exception thrown: \"%s\"", e.what());
}
catch (...)
{
Serial.println("Other exception thrown.");
}
}
void selfTest()
{
if (selfTestPumpRun >= 0 && selfTestPumpRun < MAX_PLANTS)
{
Serial << "self test mode pump deactivate " << pumpToRun << endl;
Serial.flush();
mPlants[selfTestPumpRun].deactivatePump();
}
if (selfTestPumpRun >= MAX_PLANTS)
{
Serial << "self test finished all pumps, proceed to initial wait mode " << selfTestPumpRun << endl;
Serial.flush();
digitalWrite(OUTPUT_ENABLE_PUMP, LOW);
nextBlink = millis() + 500;
}
else
{
selfTestPumpRun++;
nextBlink = millis() + 5000;
}
if (selfTestPumpRun < MAX_PLANTS)
{
Serial << "self test activating pump " << selfTestPumpRun << endl;
Serial.flush();
mPlants[selfTestPumpRun].activatePump();
}
}
/**
* @brief Cyclic call
* Executs the Homie base functionallity or triggers sleeping, if requested.
*/
void loop()
{
Homie.loop();
/* Toggel Senor LED to visualize mode 3 */
if (mDownloadMode)
{
if (nextBlink < millis())
{
digitalWrite(OUTPUT_ENABLE_SENSOR, !digitalRead(OUTPUT_ENABLE_SENSOR));
if (mConfigured)
{
nextBlink = millis() + 500;
}
else
{
selfTest();
}
}
}
else
{
unsigned long timeSinceSetup = millis() - setupFinishedTimestamp;
if ((timeSinceSetup > MQTT_TIMEOUT) && (!mSensorsRead))
{
mSensorsRead = true;
/* Disable Wifi and put modem into sleep mode */
WiFi.mode(WIFI_OFF);
Serial << "Wifi mode set to " << WIFI_OFF << " mqqt was no reached within " << timeSinceSetup << "ms , fallback to offline mode " << endl;
Serial.flush();
plantcontrol();
}
}
/** Timeout always stopping the ESP -> no endless power consumption */
if (millis() > ESP_STALE_TIMEOUT && !mDownloadMode)
{
Serial << (millis() / 1000) << "not terminated watchdog reset" << endl;
Serial.flush();
esp_restart();
}
if (pumpToRun != -1)
{
pumpActiveLoop();
}
}
/***
* @fn plantcontrol
* Main function, doing the logic
*/
void plantcontrol()
{
if (aliveWasRead())
{
for (int i = 0; i < MAX_PLANTS; i++)
{
mPlants[i].postMQTTconnection();
mPlants[i].setProperty("consecutivePumps").send(String(consecutiveWateringPlant[i]));
}
}
readOneWireSensors();
Serial << "W : " << waterRawSensor.getAverage() << " cm (" << String(waterLevelMax.get() - waterRawSensor.getAverage()) << "%)" << endl;
float batteryVoltage = battery.getVoltage(BATTSENSOR_INDEX_BATTERY);
float chipTemp = battery.getTemperature();
Serial << "Chip Temperatur " << chipTemp << " °C " << endl;
if (aliveWasRead())
{
float remaining = waterLevelMax.get() - waterRawSensor.getAverage();
if (!isnan(remaining))
{
sensorWater.setProperty("remaining").send(String(remaining));
}
if (!isnan(waterRawSensor.getAverage()))
{
sensorWater.setProperty("distance").send(String(waterRawSensor.getAverage()));
}
sensorLipo.setProperty("percent").send(String(100 * batteryVoltage / VOLT_MAX_BATT));
sensorLipo.setProperty("volt").send(String(batteryVoltage));
sensorLipo.setProperty("current").send(String(battery.getCurrent()));
sensorLipo.setProperty("Ah").send(String(battery.getAh()));
sensorLipo.setProperty("ICA").send(String(battery.getICA()));
sensorLipo.setProperty("DCA").send(String(battery.getDCA()));
sensorLipo.setProperty("CCA").send(String(battery.getCCA()));
sensorSolar.setProperty("volt").send(String(mSolarVoltage));
sensorTemp.setProperty(TEMPERATUR_SENSOR_CHIP).send(String(chipTemp));
}
else
{
Serial.println("Skipping MQTT, offline mode");
Serial.flush();
}
bool isLowLight = (mSolarVoltage < SOLAR_CHARGE_MIN_VOLTAGE);
bool hasWater = true; //FIXME remaining > waterLevelMin.get();
//FIXME no water warning message
pumpToRun = determineNextPump(isLowLight);
//early aborts
if (pumpToRun != -1)
{
if (hasWater)
{
if (mDownloadMode)
{
log(LOG_LEVEL_INFO, LOG_PUMP_AND_DOWNLOADMODE, LOG_PUMP_AND_DOWNLOADMODE_CODE);
pumpToRun = -1;
}
}
else
{
log(LOG_LEVEL_ERROR, LOG_PUMP_BUTNOTANK_MESSAGE, LOG_PUMP_BUTNOTANK_CODE);
pumpToRun = -1;
}
}
// go directly to sleep, skipping the pump loop
if (pumpToRun == -1)
{
espDeepSleep();
}
#if defined(TIMED_LIGHT_PIN)
bool shouldLight = determineTimedLightState(isLowLight);
timedLightOn = shouldLight;
digitalWrite(TIMED_LIGHT_PIN, shouldLight);
#endif // TIMED_LIGHT_PIN
}
/** @}*/
#ifdef TIMED_LIGHT_PIN
bool determineTimedLightState(bool lowLight)
{
bool onlyAllowedWhenDark = timedLightOnlyWhenDark.get();
long hoursStart = timedLightStart.get();
long hoursEnd = timedLightEnd.get();
//ntp missing
if (getCurrentTime() < 10000)
{
timedLightNode.setProperty("state").send(String("Off, missing ntp"));
return false;
}
if (onlyAllowedWhenDark && !lowLight)
{
timedLightNode.setProperty("state").send(String("Off, not dark"));
timedLightLowVoltageTriggered = false;
return false;
}
if (((hoursStart > hoursEnd) &&
(getCurrentHour() >= hoursStart || getCurrentHour() <= hoursEnd)) ||
/* Handle e.g. start = 8, end = 21 */
((hoursStart < hoursEnd) &&
(getCurrentHour() >= hoursStart && getCurrentHour() <= hoursEnd)))
{
if (!timedLightLowVoltageTriggered && battery.getVoltage(BATTSENSOR_INDEX_BATTERY) >= timedLightVoltageCutoff.get())
{
timedLightNode.setProperty("state").send(String("On"));
return true;
}
else
{
timedLightNode.setProperty("state").send(String("Off, due to missing voltage"));
timedLightLowVoltageTriggered = true;
return false;
}
}
else
{
timedLightNode.setProperty("state").send(String("Off, outside worktime"));
return false;
}
}
#endif