/** \addtogroup Controller * @{ * * @file main.cpp * @author Ollo * @brief PlantControl * @version 0.1 * @date 2020-05-01 * * @copyright Copyright (c) 2020 */ /****************************************************************************** * INCLUDES ******************************************************************************/ #include "LogDefines.h" #include "FileUtils.h" #include "TimeUtils.h" #include "PlantCtrl.h" #include "ControllerConfiguration.h" #include "HomieConfiguration.h" #include "DallasTemperature.h" #include #include "time.h" #include "esp_sleep.h" #include "RunningMedian.h" #include "WakeReason.h" #include #include #include #include "DS2438.h" #include "soc/soc.h" #include "soc/rtc_cntl_reg.h" #include #include /****************************************************************************** * DEFINES ******************************************************************************/ #define AMOUNT_SENOR_QUERYS 8 #define MAX_TANK_DEPTH 2000 #define TEST_TOPIC "roundtrip\0" #define LOG_TOPIC "log\0" #define BACKUP_TOPIC "$implementation/config/backup/set\0" #define CONFIG_FILE "/homie/config.json" #define CONFIG_FILE_BACKUP "/homie/config.json.bak" #define getTopic(test, topic) \ char *topic = new char[strlen(Homie.getConfiguration().mqtt.baseTopic) + strlen(Homie.getConfiguration().deviceId) + 1 + strlen(test) + 1]; \ strcpy(topic, Homie.getConfiguration().mqtt.baseTopic); \ strcat(topic, Homie.getConfiguration().deviceId); \ strcat(topic, "/"); \ strcat(topic, test); /****************************************************************************** * FUNCTION PROTOTYPES ******************************************************************************/ void log(int level, String message, int code); int determineNextPump(bool lowLight); void plantcontrol(); void readPowerSwitchedSensors(); bool determineTimedLightState(bool lowLight); /****************************************************************************** * NON VOLATILE VARIABLES in DEEP SLEEP ******************************************************************************/ RTC_DATA_ATTR int lastPumpRunning = -1; /**< store last successfully waterd plant */ RTC_DATA_ATTR long lastWaterValue = 0; /**< to calculate the used water per plant */ #if defined(TIMED_LIGHT_PIN) RTC_DATA_ATTR bool timedLightOn = false; /**< allow fast recovery after poweron */ #endif // TIMED_LIGHT_PIN RTC_DATA_ATTR long rtcLastWateringPlant[MAX_PLANTS] = {0}; RTC_DATA_ATTR long consecutiveWateringPlant[MAX_PLANTS] = {0}; /****************************************************************************** * LOCAL VARIABLES ******************************************************************************/ bool volatile mDownloadMode = false; /**< Controller must not sleep */ bool volatile mSensorsRead = false; /**< Sensors are read without Wifi or MQTT */ bool volatile mAliveWasRead = false; bool volatile mMQTTReady = false; bool mConfigured = false; long nextBlink = 0; /**< Time needed in main loop to support expected blink code */ RunningMedian waterRawSensor = RunningMedian(5); float mSolarVoltage = 0.0f; /**< Voltage from solar panels */ unsigned long setupFinishedTimestamp; /*************************** Hardware abstraction *****************************/ OneWire oneWire(SENSOR_ONEWIRE); DallasTemperature sensors(&oneWire); DS2438 battery(&oneWire, 0.0333333f, AMOUNT_SENOR_QUERYS); VL53L0X tankSensor; Plant mPlants[MAX_PLANTS] = { Plant(SENSOR_PLANT0, OUTPUT_PUMP0, 0, &plant0, &mSetting0), Plant(SENSOR_PLANT1, OUTPUT_PUMP1, 1, &plant1, &mSetting1), Plant(SENSOR_PLANT2, OUTPUT_PUMP2, 2, &plant2, &mSetting2), Plant(SENSOR_PLANT3, OUTPUT_PUMP3, 3, &plant3, &mSetting3), Plant(SENSOR_PLANT4, OUTPUT_PUMP4, 4, &plant4, &mSetting4), Plant(SENSOR_PLANT5, OUTPUT_PUMP5, 5, &plant5, &mSetting5), Plant(SENSOR_PLANT6, OUTPUT_PUMP6, 6, &plant6, &mSetting6)}; /****************************************************************************** * LOCAL FUNCTIONS ******************************************************************************/ void espDeepSleepFor(long seconds, bool activatePump) { if (mDownloadMode) { log(LOG_LEVEL_DEBUG, "abort deepsleep, DownloadMode active", LOG_DEBUG_CODE); return; } if (mAliveWasRead) { for (int i = 0; i < 10; i++) { long cTime = getCurrentTime(); if (cTime < 100000) { delay(100); } else { break; } } if (getCurrentTime() < 100000) { log(LOG_LEVEL_DEBUG, "NTP timeout before deepsleep", LOG_DEBUG_CODE); } } //allo hold for all digital pins gpio_deep_sleep_hold_en(); esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_PERIPH, ESP_PD_OPTION_OFF); esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_SLOW_MEM, ESP_PD_OPTION_ON); esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_FAST_MEM, ESP_PD_OPTION_ON); if (activatePump) { esp_sleep_pd_config(ESP_PD_DOMAIN_XTAL, ESP_PD_OPTION_ON); gpio_hold_en(OUTPUT_ENABLE_PUMP); //pump pwr } else { gpio_hold_dis(OUTPUT_ENABLE_PUMP); //pump pwr digitalWrite(OUTPUT_ENABLE_PUMP, LOW); digitalWrite(OUTPUT_ENABLE_SENSOR, LOW); for (int i = 0; i < MAX_PLANTS; i++) { mPlants[i].deactivatePump(); } } gpio_hold_en(OUTPUT_PUMP0); gpio_hold_en(OUTPUT_PUMP1); gpio_hold_en(OUTPUT_PUMP2); gpio_hold_en(OUTPUT_PUMP3); gpio_hold_en(OUTPUT_PUMP4); gpio_hold_en(OUTPUT_PUMP5); gpio_hold_en(OUTPUT_PUMP6); #if defined(TIMED_LIGHT_PIN) gpio_hold_en(TIMED_LIGHT_PIN); #endif // TIMED_LIGHT_PIN esp_sleep_enable_timer_wakeup((seconds * 1000U * 1000U)); if (mAliveWasRead) { delay(1000); Homie.prepareToSleep(); } else { esp_deep_sleep_start(); } } //requires homie being started void readOneWireSensors() { for (uint8_t i = 0; i < sensors.getDeviceCount(); i++) { uint8_t ds18b20Address[8]; bool valid = false; float temp = -127; for (int retry = 0; retry < AMOUNT_SENOR_QUERYS && !valid; retry++) { bool validAddress = sensors.getAddress(ds18b20Address, i); if (validAddress && sensors.validFamily(ds18b20Address)) { temp = sensors.getTempC(ds18b20Address); if (temp != -127) { valid = true; } else { delay(10); } } } if (!valid) { //wrong family or crc errors on each retry continue; } char buf[sizeof(ds18b20Address) * 2]; snprintf(buf, sizeof(buf), "%.2X%.2X%.2X%.2X%.2X%.2X%.2X%.2X", ds18b20Address[0], ds18b20Address[1], ds18b20Address[2], ds18b20Address[3], ds18b20Address[4], ds18b20Address[5], ds18b20Address[6], ds18b20Address[7]); if (valid) { Serial << "DS18S20 Temperatur " << String(buf) << " : " << temp << " °C " << endl; if (strcmp(lipoSensorAddr.get(), buf) == 0) { if (mAliveWasRead) { sensorTemp.setProperty(TEMPERATUR_SENSOR_LIPO).send(String(temp)); } Serial << "Lipo Temperatur " << temp << " °C " << endl; } if (strcmp(waterSensorAddr.get(), buf) == 0) { if (mAliveWasRead) { sensorTemp.setProperty(TEMPERATUR_SENSOR_WATER).send(String(temp)); } Serial << "Water Temperatur " << temp << " °C " << endl; } /* Always send the sensor address with the temperatur value */ if (mAliveWasRead) { sensorTemp.setProperty(String(buf)).send(String(temp)); } } else { Serial << "DS18S20 sensor " << String(buf) << " could not be read " << temp << endl; } } battery.update(); mSolarVoltage = battery.getVoltage(BATTSENSOR_INDEX_SOLAR) * SOLAR_VOLT_FACTOR; Serial.flush(); } /** * @brief Sensors, that are connected to GPIOs, mandatory for WIFI. * These sensors (ADC2) can only be read when no Wifi is used. */ void readPowerSwitchedSensors() { digitalWrite(OUTPUT_ENABLE_SENSOR, HIGH); delay(50); for (int i = 0; i < MAX_PLANTS; i++) { mPlants[i].startMoistureMeasurement(); } delay(MOISTURE_MEASUREMENT_DURATION); for (int i = 0; i < MAX_PLANTS; i++) { mPlants[i].stopMoistureMeasurement(); } for (int i = 0; i < MAX_PLANTS; i++) { Serial << "Plant " << i << " measurement: " << mPlants[i].getCurrentMoisture() << " hz" << endl; } waterRawSensor.clear(); Wire.setPins(SENSOR_TANK_TRG, SENSOR_TANK_ECHO); Wire.begin(); tankSensor.setTimeout(500); long start = millis(); bool distanceReady = false; while (start + 500 > millis()) { if (tankSensor.init()) { distanceReady = true; break; } else { delay(20); } } if (distanceReady) { tankSensor.setSignalRateLimit(0.1); // increase laser pulse periods (defaults are 14 and 10 PCLKs) tankSensor.setVcselPulsePeriod(VL53L0X::VcselPeriodPreRange, 18); tankSensor.setVcselPulsePeriod(VL53L0X::VcselPeriodFinalRange, 14); tankSensor.setMeasurementTimingBudget(200000); for (int readCnt = 0; readCnt < 5; readCnt++) { if (!tankSensor.timeoutOccurred()) { uint16_t distance = tankSensor.readRangeSingleMillimeters(); if (distance < MAX_TANK_DEPTH) { waterRawSensor.add(distance); } } delay(10); } Serial << "Distance sensor " << waterRawSensor.getMedian() << " mm" << endl; } else { log(LOG_LEVEL_WARN, LOG_TANKSENSOR_FAIL_DETECT, LOG_TANKSENSOR_FAIL_DETECT_CODE); } /* deactivate the sensors */ digitalWrite(OUTPUT_ENABLE_SENSOR, LOW); } void onMessage(char *incoming, char *payload, AsyncMqttClientMessageProperties properties, size_t len, size_t index, size_t total) { getTopic(TEST_TOPIC, testTopic); if (strcmp(incoming, testTopic) == 0) { mAliveWasRead = true; } delete testTopic; getTopic(BACKUP_TOPIC, backupTopic); if (strcmp(incoming, backupTopic) == 0) { if (strcmp(payload, "true") == 0) { bool backupSucessful = copyFile(CONFIG_FILE, CONFIG_FILE_BACKUP); printFile(CONFIG_FILE_BACKUP); if (backupSucessful) { log(LOG_LEVEL_INFO, LOG_BACKUP_SUCCESSFUL, LOG_BACKUP_SUCCESSFUL_CODE); } else { log(LOG_LEVEL_INFO, LOG_BACKUP_FAILED, LOG_BACKUP_FAILED_CODE); } Homie.getMqttClient().publish(backupTopic, 2, true, "false"); } } delete backupTopic; } void onHomieEvent(const HomieEvent &event) { switch (event.type) { case HomieEventType::READY_TO_SLEEP: esp_deep_sleep_start(); break; case HomieEventType::SENDING_STATISTICS: break; case HomieEventType::MQTT_READY: if (mSensorsRead) { Serial.printf("Timeout occured... too late!\r\n"); return; } mSensorsRead = true; // MQTT is working, deactivate timeout logic configTime(0, 0, ntpServer.get()); { getTopic(TEST_TOPIC, testopic) Homie.getMqttClient() .subscribe(testopic, 2); Homie.getMqttClient().publish(testopic, 2, false, "ping"); Homie.getMqttClient().onMessage(onMessage); getTopic(BACKUP_TOPIC, backupTopic) Homie.getMqttClient() .subscribe(backupTopic, 2); } mMQTTReady = true; break; case HomieEventType::OTA_STARTED: for (int i = 0; i < MAX_PLANTS; i++) { mPlants[i].deactivatePump(); } WRITE_PERI_REG(RTC_CNTL_BROWN_OUT_REG, 0); digitalWrite(OUTPUT_ENABLE_PUMP, HIGH); delay(100); WRITE_PERI_REG(RTC_CNTL_BROWN_OUT_REG, 1); mDownloadMode = true; break; case HomieEventType::OTA_SUCCESSFUL: digitalWrite(OUTPUT_ENABLE_SENSOR, LOW); digitalWrite(OUTPUT_ENABLE_PUMP, LOW); ESP.restart(); break; default: break; } } int determineNextPump(bool isLowLight) { int pumpToUse = -1; for (int i = 0; i < MAX_PLANTS; i++) { bool wateralarm = consecutiveWateringPlant[i] >= pumpIneffectiveWarning.get(); if (wateralarm) { log(LOG_LEVEL_ERROR, String(String(i) + " Plant still dry after " + String(consecutiveWateringPlant[i]) + " watering attempts"), LOG_PUMP_INEFFECTIVE); } Plant plant = mPlants[i]; if (!plant.isPumpTriggerActive()) { plant.publishState("deactivated"); log(LOG_LEVEL_DEBUG, String(String(i) + " Skip deactivated pump"), LOG_DEBUG_CODE); continue; } if ((rtcLastWateringPlant[i] + plant.getCooldownInSeconds()) > getCurrentTime()) { if (wateralarm) { plant.publishState("cooldown+alarm"); } else { plant.publishState("cooldown"); } log(LOG_LEVEL_DEBUG, String(String(i) + " Skipping due to cooldown " + String(rtcLastWateringPlant[i] + plant.getCooldownInSeconds())), LOG_DEBUG_CODE); continue; } if (!isLowLight && plant.isAllowedOnlyAtLowLight()) { if (wateralarm) { plant.publishState("sunny+alarm"); } else { plant.publishState("sunny"); } log(LOG_LEVEL_DEBUG, String(String(i) + " No pump required: due to light"), LOG_DEBUG_CODE); continue; } if (equalish(plant.getCurrentMoisture(), MISSING_SENSOR)) { plant.publishState("nosensor"); log(LOG_LEVEL_ERROR, String(String(i) + " No pump possible: missing sensor"), LOG_MISSING_PUMP); continue; } if (plant.isPumpRequired()) { /* Handle e.g. start = 21, end = 8 */ if (((plant.getHoursStart() > plant.getHoursEnd()) && (getCurrentHour() >= plant.getHoursStart() || getCurrentHour() <= plant.getHoursEnd())) || /* Handle e.g. start = 8, end = 21 */ ((plant.getHoursStart() < plant.getHoursEnd()) && (getCurrentHour() >= plant.getHoursStart() && getCurrentHour() <= plant.getHoursEnd())) || /* no time from NTP received */ (getCurrentTime() < 10000)) { if (wateralarm) { plant.publishState("active+alarm"); } else { plant.publishState("active"); } consecutiveWateringPlant[i]++; log(LOG_LEVEL_DEBUG, String(String(i) + " Requested pumping"), LOG_DEBUG_CODE); pumpToUse = i; } else { if (wateralarm) { plant.publishState("after-work+alarm"); } else { plant.publishState("after-work"); } log(LOG_LEVEL_DEBUG, String(String(i) + " ignored due to time boundary: " + String(plant.getHoursStart()) + " to " + String(plant.getHoursEnd()) + " ( current " + String(getCurrentHour()) + " )"), LOG_DEBUG_CODE); } continue; } else { plant.publishState("wet"); //plant was detected as wet, remove consecutive count consecutiveWateringPlant[i] = 0; } } return pumpToUse; } /** * @brief Handle Mqtt commands to keep controller alive * * @param range multiple transmitted values (not used for this function) * @param value single value * @return true when the command was parsed and executed succuessfully * @return false on errors when parsing the request */ bool aliveHandler(const HomieRange &range, const String &value) { if (range.isRange) { return false; // only one controller is present } if (value.equals("ON") || value.equals("On") || value.equals("1")) { mDownloadMode = true; } else { if (mDownloadMode) { esp_restart(); } mDownloadMode = false; } return true; } bool notStarted = true; void homieLoop() { if (mMQTTReady && mAliveWasRead && notStarted) { Serial.println("received alive & mqtt is ready"); notStarted = false; plantcontrol(); } } bool switch1(const HomieRange &range, const String &value) { return mPlants[0].switchHandler(range, value); } bool switch2(const HomieRange &range, const String &value) { return mPlants[1].switchHandler(range, value); } bool switch3(const HomieRange &range, const String &value) { return mPlants[2].switchHandler(range, value); } bool switch4(const HomieRange &range, const String &value) { return mPlants[3].switchHandler(range, value); } bool switch5(const HomieRange &range, const String &value) { return mPlants[4].switchHandler(range, value); } bool switch6(const HomieRange &range, const String &value) { return mPlants[5].switchHandler(range, value); } bool switch7(const HomieRange &range, const String &value) { return mPlants[6].switchHandler(range, value); } /** * @brief Startup function * Is called once, the controller is started */ void setup() { /* reduce power consumption */ setCpuFrequencyMhz(80); Serial.begin(115200); Serial << "Wifi mode set to " << WIFI_OFF << " to allow analog2 useage " << endl; WiFi.mode(WIFI_OFF); Serial.flush(); //restore state before releasing pin, to prevent flickering #if defined(TIMED_LIGHT_PIN) pinMode(TIMED_LIGHT_PIN, OUTPUT); digitalWrite(TIMED_LIGHT_PIN, timedLightOn); gpio_hold_dis(TIMED_LIGHT_PIN); #endif // TIMED_LIGHT_PIN gpio_hold_dis(OUTPUT_PUMP0); gpio_hold_dis(OUTPUT_PUMP1); gpio_hold_dis(OUTPUT_PUMP2); gpio_hold_dis(OUTPUT_PUMP3); gpio_hold_dis(OUTPUT_PUMP4); gpio_hold_dis(OUTPUT_PUMP5); gpio_hold_dis(OUTPUT_PUMP6); gpio_hold_dis(OUTPUT_ENABLE_PUMP); /* Intialize Plant */ for (int i = 0; i < MAX_PLANTS; i++) { mPlants[i].init(); } // read button pinMode(BUTTON, INPUT); // Power pins pinMode(OUTPUT_ENABLE_PUMP, OUTPUT); digitalWrite(OUTPUT_ENABLE_PUMP, LOW); pinMode(OUTPUT_ENABLE_SENSOR, OUTPUT); if (HomieInternals::MAX_CONFIG_SETTING_SIZE < MAX_CONFIG_SETTING_ITEMS) { //increase the config settings Serial << "Limits.hpp is not adjusted, please search for this string and increase" << endl; return; } if (HomieInternals::MAX_JSON_CONFIG_FILE_SIZE < MAX_JSON_CONFIG_FILE_SIZE_CUSTOM) { //increase the config settings Serial << "Limits.hpp is not adjusted, please search for this string and increase" << endl; return; } /************************* Start One-Wire bus ***************/ int tempInitStartTime = millis(); uint8_t sensorCount = 0U; /* Required to read the temperature at least once */ while ((sensorCount == 0 || !battery.isFound()) && millis() < tempInitStartTime + TEMPERATUR_TIMEOUT) { sensors.begin(); battery.begin(); sensorCount = sensors.getDS18Count(); delay(50); } Serial << "DS18S20 count: " << sensorCount << " found in " << (millis() - tempInitStartTime) << " ms" << endl; Serial.flush(); /* Measure temperature TODO idea: move this into setup */ if (sensorCount > 0) { //sensors.setResolution(DS18B20_RESOLUTION); sensors.requestTemperatures(); } Serial << "Reading sensors start" << endl; Serial.flush(); readPowerSwitchedSensors(); Serial << "Reading sensors end" << endl; Serial.flush(); /************************* Start Homie Framework ***************/ Homie_setFirmware("PlantControl", FIRMWARE_VERSION); Homie.disableLedFeedback(); Homie_setBrand("PlantControl"); // Set default values //in seconds deepSleepTime.setDefaultValue(600).setValidator([](long candidate) { return (candidate > 0) && (candidate < (60 * 60 * 2) /** 2h max sleep */); }); deepSleepNightTime.setDefaultValue(600); wateringDeepSleep.setDefaultValue(5); ntpServer.setDefaultValue("pool.ntp.org"); /* waterLevelMax 1000 */ /* 100cm in mm */ waterLevelMin.setDefaultValue(50); /* 5cm in mm */ waterLevelWarn.setDefaultValue(500); /* 50cm in mm */ waterLevelVol.setDefaultValue(5000); /* 5l in ml */ lipoSensorAddr.setDefaultValue(""); waterSensorAddr.setDefaultValue(""); pumpIneffectiveWarning.setDefaultValue(5).setValidator([](long candidate) { return (candidate > 0) && (candidate < (20)); }); #if defined(TIMED_LIGHT_PIN) timedLightStart.setDefaultValue(18).setValidator([](long candidate) { return (candidate > 0) && (candidate < (25)); }); timedLightEnd.setDefaultValue(23).setValidator([](long candidate) { return (candidate > 0) && (candidate < (22)); }); timedLightOnlyWhenDark.setDefaultValue(true); timedLightVoltageCutoff.setDefaultValue(3.8).setValidator([](double candidate) { return (candidate > 3.3) && (candidate < (4.2)); }); #endif // TIMED_LIGHT_PIN Homie.setLoopFunction(homieLoop); Homie.onEvent(onHomieEvent); Homie.setup(); mConfigured = Homie.isConfigured(); if (mConfigured) { for (int i = 0; i < MAX_PLANTS; i++) { mPlants[i].advertise(); } mPlants[0].setSwitchHandler(switch1); mPlants[1].setSwitchHandler(switch2); mPlants[2].setSwitchHandler(switch3); mPlants[3].setSwitchHandler(switch4); mPlants[4].setSwitchHandler(switch5); mPlants[5].setSwitchHandler(switch6); mPlants[6].setSwitchHandler(switch7); sensorTemp.advertise(TEMPERATUR_SENSOR_LIPO) .setName(TEMPERATURE_NAME) .setDatatype(NUMBER_TYPE) .setUnit(TEMPERATURE_UNIT); sensorTemp.advertise(TEMPERATUR_SENSOR_WATER) .setName(TEMPERATURE_NAME) .setDatatype(NUMBER_TYPE) .setUnit(TEMPERATURE_UNIT); sensorTemp.advertise(TEMPERATUR_SENSOR_CHIP) .setName(TEMPERATURE_NAME) .setDatatype(NUMBER_TYPE) .setUnit(TEMPERATURE_UNIT); sensorLipo.advertise("percent") .setName("Percent") .setDatatype(NUMBER_TYPE) .setUnit("%"); sensorLipo.advertise("volt") .setName("Volt") .setDatatype(NUMBER_TYPE) .setUnit("V"); sensorSolar.advertise("percent") .setName("Percent") .setDatatype(NUMBER_TYPE) .setUnit("%"); sensorSolar.advertise("volt") .setName("Volt") .setDatatype(NUMBER_TYPE) .setUnit("V"); sensorWater.advertise("remaining").setDatatype(NUMBER_TYPE).setUnit("%"); } else { if (doesFileExist(CONFIG_FILE)) { printFile(CONFIG_FILE); } if (doesFileExist(CONFIG_FILE_BACKUP)) { printFile(CONFIG_FILE_BACKUP); bool restoredConfig = copyFile(CONFIG_FILE_BACKUP, CONFIG_FILE); if (restoredConfig) { deleteFile(CONFIG_FILE_BACKUP); espDeepSleepFor(1, false); return; } } readOneWireSensors(); //prevent BOD to be paranoid WRITE_PERI_REG(RTC_CNTL_BROWN_OUT_REG, 0); digitalWrite(OUTPUT_ENABLE_PUMP, HIGH); delay(100); WRITE_PERI_REG(RTC_CNTL_BROWN_OUT_REG, 1); Serial.println("Initial Setup. Start Accesspoint..."); mDownloadMode = true; } stayAlive.advertise("alive").setName("Alive").setDatatype(NUMBER_TYPE).settable(aliveHandler); setupFinishedTimestamp = millis(); } /** * @brief Cyclic call * Executs the Homie base functionallity or triggers sleeping, if requested. */ void loop() { Homie.loop(); /* Toggel Senor LED to visualize mode 3 */ if (mDownloadMode) { if (nextBlink < millis()) { digitalWrite(OUTPUT_ENABLE_SENSOR, !digitalRead(OUTPUT_ENABLE_SENSOR)); if (mConfigured) { nextBlink = millis() + 500; } else { if (lastPumpRunning >= 0 && lastPumpRunning < MAX_PLANTS) { mPlants[lastPumpRunning].deactivatePump(); } if (lastPumpRunning >= MAX_PLANTS) { digitalWrite(OUTPUT_ENABLE_PUMP, LOW); nextBlink = millis() + 500; } else { lastPumpRunning++; nextBlink = millis() + 5000; } if (lastPumpRunning < MAX_PLANTS) { mPlants[lastPumpRunning].activatePump(); } } } } else { unsigned long timeSinceSetup = millis() - setupFinishedTimestamp; if ((timeSinceSetup > MQTT_TIMEOUT) && (!mSensorsRead)) { mSensorsRead = true; /* Disable Wifi and put modem into sleep mode */ WiFi.mode(WIFI_OFF); Serial << "Wifi mode set to " << WIFI_OFF << " mqqt was no reached within " << timeSinceSetup << "ms , fallback to offline mode " << endl; Serial.flush(); plantcontrol(); } } /** Timeout always stopping the ESP -> no endless power consumption */ if (millis() > ESP_STALE_TIMEOUT && !mDownloadMode) { Serial << (millis() / 1000) << "not terminated watchdog reset" << endl; Serial.flush(); esp_restart(); } } /*** * @fn plantcontrol * Main function, doing the logic */ void plantcontrol() { if (lastPumpRunning != -1) { long waterDiff = waterRawSensor.getAverage() - lastWaterValue; mPlants[lastPumpRunning].setProperty("waterusage").send(String(waterDiff)); /* TODO convert diff into volume (milli liter) */ Serial << "Plant" << lastPumpRunning << ": Water diff " << waterDiff << " mm" << endl; } if (mAliveWasRead) { for (int i = 0; i < MAX_PLANTS; i++) { mPlants[i].postMQTTconnection(); mPlants[i].setProperty("consecutivePumps").send(String(consecutiveWateringPlant[i])); } } readOneWireSensors(); Serial << "W : " << waterRawSensor.getAverage() << " cm (" << String(waterLevelMax.get() - waterRawSensor.getAverage()) << "%)" << endl; lastWaterValue = waterRawSensor.getAverage(); float batteryVoltage = battery.getVoltage(BATTSENSOR_INDEX_BATTERY); float chipTemp = battery.getTemperature(); Serial << "Chip Temperatur " << chipTemp << " °C " << endl; if (mAliveWasRead) { float remaining = waterLevelMax.get() - waterRawSensor.getAverage(); if (!isnan(remaining)) { sensorWater.setProperty("remaining").send(String(remaining)); } if (!isnan(waterRawSensor.getAverage())) { sensorWater.setProperty("distance").send(String(waterRawSensor.getAverage())); } sensorLipo.setProperty("percent").send(String(100 * batteryVoltage / VOLT_MAX_BATT)); sensorLipo.setProperty("volt").send(String(batteryVoltage)); sensorLipo.setProperty("current").send(String(battery.getCurrent())); sensorLipo.setProperty("Ah").send(String(battery.getAh())); sensorLipo.setProperty("ICA").send(String(battery.getICA())); sensorLipo.setProperty("DCA").send(String(battery.getDCA())); sensorLipo.setProperty("CCA").send(String(battery.getCCA())); sensorSolar.setProperty("volt").send(String(mSolarVoltage)); sensorTemp.setProperty(TEMPERATUR_SENSOR_CHIP).send(String(chipTemp)); } else { Serial.println("Skipping MQTT, offline mode"); Serial.flush(); } bool isLowLight = (mSolarVoltage < SOLAR_CHARGE_MIN_VOLTAGE); bool hasWater = true; //FIXMEmWaterGone > waterLevelMin.get(); //FIXME no water warning message lastPumpRunning = determineNextPump(isLowLight); if (lastPumpRunning != -1 && !hasWater) { log(LOG_LEVEL_ERROR, LOG_PUMP_BUTNOTANK_MESSAGE, LOG_PUMP_BUTNOTANK_CODE); } else if (lastPumpRunning != -1 && hasWater) { if (mDownloadMode) { log(LOG_LEVEL_INFO, LOG_PUMP_AND_DOWNLOADMODE, LOG_PUMP_AND_DOWNLOADMODE_CODE); } else { //prevent BOD to be paranoid WRITE_PERI_REG(RTC_CNTL_BROWN_OUT_REG, 0); digitalWrite(OUTPUT_ENABLE_PUMP, HIGH); delay(100); WRITE_PERI_REG(RTC_CNTL_BROWN_OUT_REG, 1); rtcLastWateringPlant[lastPumpRunning] = getCurrentTime(); mPlants[lastPumpRunning].activatePump(); } } #if defined(TIMED_LIGHT_PIN) bool shouldLight = determineTimedLightState(isLowLight); timedLightOn = shouldLight; digitalWrite(TIMED_LIGHT_PIN, shouldLight); #endif // TIMED_LIGHT_PIN /* Always handle one of the deep sleep duration */ if (lastPumpRunning == -1 || !hasWater) { if (mSolarVoltage < SOLAR_CHARGE_MIN_VOLTAGE) { log(LOG_LEVEL_INFO, String(String(mSolarVoltage) + "V! No pumps to activate and low light, deepSleepNight"), LOG_NOPUMP_LOWLIGHT); espDeepSleepFor(deepSleepNightTime.get(), false); } else { log(LOG_LEVEL_INFO, "No pumps to activate, deepSleep", LOG_NOPUMPS); espDeepSleepFor(deepSleepTime.get(), false); } } else { espDeepSleepFor(wateringDeepSleep.get(), true); } } /** @}*/ bool determineTimedLightState(bool lowLight){ bool onlyAllowedWhenDark = timedLightOnlyWhenDark.get(); long hoursStart = timedLightStart.get(); long hoursEnd = timedLightEnd.get(); //ntp missing if(getCurrentTime() < 10000){ timedLightNode.setProperty("state").send(String("Off, missing ntp")); return false; } if(onlyAllowedWhenDark && !lowLight){ timedLightNode.setProperty("state").send(String("Off, not dark")); return false; } if (((hoursStart > hoursEnd) && (getCurrentHour() >= hoursStart || getCurrentHour() <= hoursEnd)) || /* Handle e.g. start = 8, end = 21 */ ((hoursStart < hoursEnd) && (getCurrentHour() >= hoursStart && getCurrentHour() <= hoursEnd))) { if(battery.getVoltage(BATTSENSOR_INDEX_BATTERY) >= timedLightVoltageCutoff.get() ){ timedLightNode.setProperty("state").send(String("On")); return true; }else { timedLightNode.setProperty("state").send(String("Off, due to missing voltage")); return false; } } else { timedLightNode.setProperty("state").send(String("Off, outside worktime")); return false; } } void log(int level, String message, int statusCode) { String buffer; StaticJsonDocument<200> doc; doc["level"] = level; doc["message"] = message; doc["statusCode"] = statusCode; serializeJson(doc, buffer); if (mAliveWasRead) { getTopic(LOG_TOPIC, logTopic) Homie.getMqttClient() .subscribe(logTopic, 2); Homie.getMqttClient().publish(logTopic, 2, false, buffer.c_str()); delete logTopic; } Serial << statusCode << "@" << level << " : " << message << endl; }