use std::{ env, sync::{atomic::AtomicBool, Arc, Mutex}, }; use anyhow::Result; use chrono::{Datelike, Duration, NaiveDateTime, Timelike}; use chrono_tz::Europe::Berlin; use esp_idf_hal::delay::Delay; use esp_idf_sys::{esp_restart, vTaskDelay}; use esp_ota::rollback_and_reboot; use log::error; use once_cell::sync::Lazy; use plant_hal::{CreatePlantHal, PlantCtrlBoard, PlantCtrlBoardInteraction, PlantHal, PLANT_COUNT}; use serde::{Deserialize, Serialize}; use crate::{ config::{Config, WifiConfig}, webserver::webserver::{httpd, httpd_initial}, }; mod config; pub mod plant_hal; const MOIST_SENSOR_MAX_FREQUENCY: u32 = 5200; // 60kHz (500Hz margin) const MOIST_SENSOR_MIN_FREQUENCY: u32 = 500; // 0.5kHz (500Hz margin) const FROM: (f32, f32) = ( MOIST_SENSOR_MIN_FREQUENCY as f32, MOIST_SENSOR_MAX_FREQUENCY as f32, ); const TO: (f32, f32) = (0_f32, 100_f32); mod webserver { pub mod webserver; } #[derive(Serialize, Deserialize, Copy, Clone, Debug, PartialEq)] enum OnlineMode { Offline, Wifi, SnTp, } #[derive(Serialize, Deserialize, Copy, Clone, Debug, PartialEq)] enum WaitType { InitialConfig, FlashError, NormalConfig, StayAlive, } #[derive(Serialize, Deserialize, Copy, Clone, Debug, PartialEq, Default)] struct PlantState { a: u8, b: u8, p: u8, after_p: u8, dry: bool, active: bool, pump_error: bool, not_effective: bool, cooldown: bool, no_water: bool, } fn wait_infinity(wait_type: WaitType, reboot_now: Arc) -> ! { let delay = match wait_type { WaitType::InitialConfig => 250_u32, WaitType::FlashError => 100_u32, WaitType::NormalConfig => 500_u32, WaitType::StayAlive => 1000_u32, }; let led_count = match wait_type { WaitType::InitialConfig => 8, WaitType::FlashError => 8, WaitType::NormalConfig => 4, WaitType::StayAlive => 2, }; loop { unsafe { //do not trigger watchdog for i in 0..8 { BOARD_ACCESS.lock().unwrap().fault(i, i < led_count); } BOARD_ACCESS.lock().unwrap().general_fault(true); vTaskDelay(delay); BOARD_ACCESS.lock().unwrap().general_fault(false); for i in 0..8 { BOARD_ACCESS.lock().unwrap().fault(i, false); } vTaskDelay(delay); if wait_type == WaitType::StayAlive && !STAY_ALIVE.load(std::sync::atomic::Ordering::Relaxed) {} if reboot_now.load(std::sync::atomic::Ordering::Relaxed) { println!("Rebooting"); esp_restart(); } } } } pub static BOARD_ACCESS: Lazy> = Lazy::new(|| PlantHal::create().unwrap()); pub static STAY_ALIVE: Lazy = Lazy::new(|| AtomicBool::new(false)); fn map_range(from_range: (f32, f32), to_range: (f32, f32), s: f32) -> f32 { to_range.0 + (s - from_range.0) * (to_range.1 - to_range.0) / (from_range.1 - from_range.0) } fn main() -> Result<()> { // It is necessary to call this function once. Otherwise some patches to the runtime // implemented by esp-idf-sys might not link properly. See https://github.com/esp-rs/esp-idf-template/issues/71 esp_idf_svc::sys::link_patches(); // Bind the log crate to the ESP Logging facilities esp_idf_svc::log::EspLogger::initialize_default(); if esp_idf_sys::CONFIG_MAIN_TASK_STACK_SIZE < 20000 { error!( "stack too small: {} bail!", esp_idf_sys::CONFIG_MAIN_TASK_STACK_SIZE ); return Ok(()); } log::info!("Startup Rust"); let git_hash = env!("VERGEN_GIT_DESCRIBE"); println!("Version useing git has {}", git_hash); let mut partition_state: embedded_svc::ota::SlotState = embedded_svc::ota::SlotState::Unknown; // match esp_idf_svc::ota::EspOta::new() { // Ok(ota) => { // match ota.get_running_slot(){ // Ok(slot) => { // partition_state = slot.state; // println!( // "Booting from {} with state {:?}", // slot.label, partition_state // ); // }, // Err(err) => { // println!("Error getting running slot {}", err); // }, // } // }, // Err(err) => { // println!("Error obtaining ota info {}", err); // }, // } println!("Board hal init"); let mut board: std::sync::MutexGuard<'_, PlantCtrlBoard<'_>> = BOARD_ACCESS.lock().unwrap(); println!("Mounting filesystem"); board.mount_file_system()?; let free_space = board.file_system_size()?; println!( "Mounted, total space {} used {} free {}", free_space.total_size, free_space.used_size, free_space.free_size ); let time = board.time(); let mut cur = match time { Ok(cur) => cur, Err(err) => { log::error!("time error {}", err); NaiveDateTime::from_timestamp_millis(0).unwrap().and_utc() } }; //check if we know the time current > 2020 if cur.year() < 2020 { if board.is_day() { //assume TZ safe times ;) cur = *cur.with_hour(15).get_or_insert(cur); } else { cur = *cur.with_hour(3).get_or_insert(cur); } } println!("cur is {}", cur); if board.is_config_reset() { board.general_fault(true); println!("Reset config is pressed, waiting 5s"); for _i in 0..25 { board.general_fault(true); Delay::new_default().delay_ms(50); board.general_fault(false); Delay::new_default().delay_ms(50); } if board.is_config_reset() { println!("Reset config is still pressed, deleting configs and reboot"); match board.remove_configs() { Ok(case) => { println!("Succeeded in deleting config {}", case); } Err(err) => { println!("Could not remove config files, system borked {}", err); //terminate main app and freeze wait_infinity(WaitType::FlashError, Arc::new(AtomicBool::new(false))); } } } else { board.general_fault(false); } } let mut online_mode = OnlineMode::Offline; let wifi_conf = board.get_wifi(); let wifi: WifiConfig; match wifi_conf { Ok(conf) => { wifi = conf; } Err(err) => { if board.is_wifi_config_file_existant() { match partition_state { embedded_svc::ota::SlotState::Invalid | embedded_svc::ota::SlotState::Unverified => { println!("Config seem to be unparsable after upgrade, reverting"); rollback_and_reboot()?; } _ => {} } } println!("Missing wifi config, entering initial config mode {}", err); board.wifi_ap().unwrap(); //config upload will trigger reboot! drop(board); let reboot_now = Arc::new(AtomicBool::new(false)); let _webserver = httpd_initial(reboot_now.clone()); wait_infinity(WaitType::InitialConfig, reboot_now.clone()); } }; println!("attempting to connect wifi"); match board.wifi(&wifi.ssid, wifi.password.as_deref(), 10000) { Ok(_) => { online_mode = OnlineMode::Wifi; } Err(_) => { println!("Offline mode"); board.general_fault(true); } } if online_mode == OnlineMode::Wifi { match board.sntp(1000 * 120) { Ok(new_time) => { cur = new_time; online_mode = OnlineMode::SnTp; } Err(err) => { println!("sntp error: {}", err); board.general_fault(true); } } println!("Running logic at utc {}", cur); let europe_time = cur.with_timezone(&Berlin); println!("Running logic at europe/berlin {}", europe_time); } let config: Config; match board.get_config() { Ok(valid) => { config = valid; } Err(err) => { println!("Missing normal config, entering config mode {}", err); //config upload will trigger reboot! drop(board); let reboot_now = Arc::new(AtomicBool::new(false)); let _webserver = httpd(reboot_now.clone()); wait_infinity(WaitType::NormalConfig, reboot_now.clone()); } } //do mqtt before config check, as mqtt might configure if online_mode == OnlineMode::SnTp { match board.mqtt(&config) { Ok(_) => { println!("Mqtt connection ready"); } Err(err) => { println!("Could not connect mqtt due to {}", err); } } } match board.battery_state() { Ok(_state) => {} Err(err) => { board.general_fault(true); println!("Could not read battery state, assuming low power {}", err); } } let mut enough_water = true; if config.tank_sensor_enabled { let tank_value = board.tank_sensor_mv(); match tank_value { Ok(tank_raw) => { //FIXME clear let percent = map_range( (config.tank_empty_mv, config.tank_full_mv), (0_f32, 100_f32), tank_raw.into(), ); let left_ml = ((percent / 100_f32) * config.tank_useable_ml as f32) as u32; println!( "Tank sensor returned mv {} as {}% leaving {} ml useable", tank_raw, percent as u8, left_ml ); if config.tank_warn_percent > percent as u8 { board.general_fault(true); println!( "Low water, current percent is {}, minimum warn level is {}", percent as u8, config.tank_warn_percent ); //FIXME warn here } if config.tank_warn_percent <= 0 { enough_water = false; } } Err(_) => { board.general_fault(true); if !config.tank_allow_pumping_if_sensor_error { enough_water = false; } //set tank sensor state to fault } } } let plantstate = [PlantState { ..Default::default() }; PLANT_COUNT]; for plant in 0..PLANT_COUNT { let mut state = plantstate[plant]; //return mapf(mMoisture_raw.getMedian(), MOIST_SENSOR_MIN_FRQ, MOIST_SENSOR_MAX_FRQ, 0, 100); state.a = map_range( FROM, TO, board.measure_moisture_hz(plant, plant_hal::Sensor::A)? as f32, ) as u8; state.b = map_range( FROM, TO, board.measure_moisture_hz(plant, plant_hal::Sensor::B)? as f32, ) as u8; state.p = map_range( FROM, TO, board.measure_moisture_hz(plant, plant_hal::Sensor::PUMP)? as f32, ) as u8; let plant_config = config.plants[plant]; //FIXME how to average analyze whatever? if state.a < plant_config.target_moisture || state.b < plant_config.target_moisture { state.dry = true; if !enough_water { state.no_water = true; } } let duration = Duration::minutes((60 * plant_config.pump_cooldown_min).into()); if (board.last_pump_time(plant)? + duration) > cur { state.cooldown = true; } if state.dry { let consecutive_pump_count = board.consecutive_pump_count(plant) + 1; board.store_consecutive_pump_count(plant, consecutive_pump_count); if consecutive_pump_count > config.max_consecutive_pump_count.into() { state.not_effective = true; board.fault(plant, true); } } else { board.store_consecutive_pump_count(plant, 0); } //TODO update mqtt state here! } if STAY_ALIVE.load(std::sync::atomic::Ordering::Relaxed) { drop(board); let reboot_now = Arc::new(AtomicBool::new(false)); let _webserver = httpd(reboot_now.clone()); wait_infinity(WaitType::StayAlive, reboot_now.clone()); } 'eachplant: for plant in 0..PLANT_COUNT { let mut state = plantstate[plant]; if state.dry && !state.cooldown { println!("Trying to pump with pump {} now", plant); let plant_config = config.plants[plant]; board.any_pump(true)?; board.store_last_pump_time(plant, cur); board.pump(plant, true)?; board.last_pump_time(plant)?; state.active = true; unsafe { vTaskDelay(plant_config.pump_time_s.into()) }; state.after_p = map_range( FROM, TO, board.measure_moisture_hz(plant, plant_hal::Sensor::PUMP)? as f32, ) as u8; if state.after_p < state.p + 5 { state.pump_error = true; board.fault(plant, true); } break 'eachplant; } } /* //check if during light time //lightstate += out of worktime //check battery level //lightstate += battery empty //check solar level if config requires //lightstate += stillday //if no preventing lightstate, enable light //lightstate = active //keep webserver in scope let webserver = httpd(true); let delay = Delay::new_default(); loop { //let freertos do shit delay.delay_ms(1001); } */ //deepsleep here? Ok(()) } //error codes //error_reading_config_after_upgrade //error_no_config_after_upgrade //error_tank_sensor_fault