/** \addtogroup Controller * @{ * * @file main.cpp * @author Ollo * @brief PlantControl * @version 0.1 * @date 2020-05-01 * * @copyright Copyright (c) 2020 */ /****************************************************************************** * INCLUDES ******************************************************************************/ #include "PlantCtrl.h" #include "ControllerConfiguration.h" #include "HomieConfiguration.h" #include "DallasTemperature.h" #include #include "time.h" #include "esp_sleep.h" #include "RunningMedian.h" #include "WakeReason.h" #include #include #include #include "DS2438.h" /****************************************************************************** * DEFINES ******************************************************************************/ #define AMOUNT_SENOR_QUERYS 8 #define SENSOR_QUERY_SHIFTS 3 #define SOLAR4SENSORS 6.0f #define TEMP_INIT_VALUE -999.0f #define TEMP_MAX_VALUE 85.0f #define HalfHour 60 /****************************************************************************** * TYPE DEFS ******************************************************************************/ typedef struct { long lastActive; /**< Timestamp, a pump was activated */ long moistTrigger; /**< Trigger value of the moist sensor */ long moisture; /**< last measured moist value */ } rtc_plant_t; /****************************************************************************** * FUNCTION PROTOTYPES ******************************************************************************/ int determineNextPump(); void setLastActivationForPump(int pumpId, long time); int readTemp(); /****************************************************************************** * NON VOLATILE VARIABLES in DEEP SLEEP ******************************************************************************/ RTC_DATA_ATTR rtc_plant_t rtcPlant[MAX_PLANTS]; RTC_DATA_ATTR long gotoMode2AfterThisTimestamp = 0; RTC_DATA_ATTR long rtcDeepSleepTime = 0; /**< Time, when the microcontroller shall be up again */ RTC_DATA_ATTR int lastPumpRunning = 0; RTC_DATA_ATTR long lastWaterValue = 0; RTC_DATA_ATTR float rtcLastLipoTemp = 0.0f; RTC_DATA_ATTR float rtcLastWaterTemp = 0.0f; RTC_DATA_ATTR float rtcLastBatteryVoltage = 0.0f; RTC_DATA_ATTR float rtcLastSolarVoltage = 0.0f; RTC_DATA_ATTR int gBootCount = 0; RTC_DATA_ATTR int gCurrentPlant = 0; /**< Value Range: 1 ... 7 (0: no plant needs water) */ RTC_DATA_ATTR int rtcLipoTempIndex = -1; RTC_DATA_ATTR int rtcWaterTempIndex = -1; /****************************************************************************** * LOCAL VARIABLES ******************************************************************************/ const unsigned long TEMPREADCYCLE = 30000; /**< Check temperature all half minutes */ int wakeUpReason = WAKEUP_REASON_UNDEFINED; bool volatile mode3Active = false; /**< Controller must not sleep */ bool volatile mDeepsleep = false; int readCounter = 0; bool mConfigured = false; long nextBlink = 0; /**< Time needed in main loop to support expected blink code */ RunningMedian lipoRawSensor = RunningMedian(VOLT_SENSOR_MEASURE_SERIES); RunningMedian solarRawSensor = RunningMedian(VOLT_SENSOR_MEASURE_SERIES); RunningMedian waterRawSensor = RunningMedian(5); RunningMedian lipoTempSensor = RunningMedian(TEMP_SENSOR_MEASURE_SERIES); RunningMedian waterTempSensor = RunningMedian(TEMP_SENSOR_MEASURE_SERIES); float mBatteryVoltage = 0.0f; float mSolarVoltage = 0.0f; float mChipTemp = 0.0f; /*************************** Hardware abstraction *****************************/ OneWire oneWire(SENSOR_DS18B20); DallasTemperature sensors(&oneWire); DS2438 battery(&oneWire,0.1f); Plant mPlants[MAX_PLANTS] = { Plant(SENSOR_PLANT0, OUTPUT_PUMP0, 0, &plant0, &mSetting0), Plant(SENSOR_PLANT1, OUTPUT_PUMP1, 1, &plant1, &mSetting1), Plant(SENSOR_PLANT2, OUTPUT_PUMP2, 2, &plant2, &mSetting2), Plant(SENSOR_PLANT3, OUTPUT_PUMP3, 3, &plant3, &mSetting3), Plant(SENSOR_PLANT4, OUTPUT_PUMP4, 4, &plant4, &mSetting4), Plant(SENSOR_PLANT5, OUTPUT_PUMP5, 5, &plant5, &mSetting5), Plant(SENSOR_PLANT6, OUTPUT_PUMP6, 6, &plant6, &mSetting6)}; /****************************************************************************** * LOCAL FUNCTIONS ******************************************************************************/ void setMoistureTrigger(int plantId, long value) { if ((plantId >= 0) && (plantId < MAX_PLANTS)) { rtcPlant[plantId].moistTrigger = value; } } void setLastMoisture(int plantId, long value) { if ((plantId >= 0) && (plantId < MAX_PLANTS)) { rtcPlant[plantId].moisture = value; } } long getLastMoisture(int plantId) { if ((plantId >= 0) && (plantId < MAX_PLANTS)) { return rtcPlant[plantId].moisture; } else { return -1; } } long getDistance() { byte startByte, h_data, l_data, sum; byte buf[3]; startByte = (byte)Serial.read(); if (startByte == 255) { unsigned int distance; Serial.readBytes(buf, 3); h_data = buf[0]; l_data = buf[1]; sum = buf[2]; distance = (h_data << 8) + l_data; if (((startByte + h_data + l_data) & 0xFF) != sum) { return -1; } else { return distance; } } else { return -2; } } /** * @brief Read Voltage and Temperatur * Read the battery voltage and the current voltage, provided by the solar panel */ void readSystemSensors() { int timeoutTemp = millis() + TEMPERATUR_TIMEOUT; int sensorCount = 0; rtcLastLipoTemp = lipoTempSensor.getAverage(); rtcLastWaterTemp = waterTempSensor.getAverage(); /* Required to read the temperature at least once */ while (sensorCount == 0 && millis() < timeoutTemp) { sensors.begin(); battery.begin(); sensorCount = sensors.getDeviceCount(); Serial << "Waitloop: One wire count: " << sensorCount << endl; delay(200); } Serial << "One wire count: " << sensorCount << endl; /* Measure temperature */ if (sensorCount > 0) { sensors.requestTemperatures(); } for (int i = 0; i < sensorCount; i++) { Serial << "OnwWire sensor " << i << " has value " << sensors.getTempCByIndex(i) << endl; } // Update battery chip data battery.update(); mSolarVoltage = battery.getVoltage(BATTSENSOR_INDEX_SOLAR) * SOLAR_VOLT_FACTOR; mBatteryVoltage = battery.getVoltage(BATTSENSOR_INDEX_BATTERY); mChipTemp = battery.getTemperature(); for (int i = 0; i < VOLT_SENSOR_MEASURE_SERIES; i++) { lipoRawSensor.add(analogRead(SENSOR_LIPO)); solarRawSensor.add(analogRead(SENSOR_SOLAR)); } Serial << "Lipo " << lipoRawSensor.getAverage() << " -> " << mBatteryVoltage << endl; rtcLastBatteryVoltage = mBatteryVoltage; rtcLastSolarVoltage = mSolarVoltage; } long getCurrentTime() { struct timeval tv_now; gettimeofday(&tv_now, NULL); return tv_now.tv_sec; } void espDeepSleepFor(long seconds, bool activatePump = false) { if (mode3Active) { Serial << "abort deepsleep, mode3Active" << endl; return; } for (int i = 0; i < 10; i++) { long cTime = getCurrentTime(); if (cTime < 100000) { Serial << "Wait for ntp" << endl; delay(100); } else { break; } } esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_PERIPH, ESP_PD_OPTION_OFF); esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_FAST_MEM, ESP_PD_OPTION_OFF); esp_sleep_pd_config(ESP_PD_DOMAIN_XTAL, ESP_PD_OPTION_ON); esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_SLOW_MEM, ESP_PD_OPTION_ON); if (activatePump) { gpio_deep_sleep_hold_en(); gpio_hold_en(GPIO_NUM_13); //pump pwr } else { gpio_hold_dis(GPIO_NUM_13); //pump pwr gpio_deep_sleep_hold_dis(); digitalWrite(OUTPUT_PUMP, LOW); digitalWrite(OUTPUT_SENSOR, LOW); for (int i = 0; i < MAX_PLANTS; i++) { mPlants[i].deactivatePump(); } } //gpio_hold_en(GPIO_NUM_23); //p0 //FIXME fix for outher outputs Serial.print("Trying to sleep for "); Serial.print(seconds); Serial.println(" seconds"); esp_sleep_enable_timer_wakeup((seconds * 1000U * 1000U)); mDeepsleep = true; } void mode2MQTT() { readSystemSensors(); digitalWrite(OUTPUT_PUMP, LOW); for (int i = 0; i < MAX_PLANTS; i++) { mPlants[i].deactivatePump(); } if (deepSleepTime.get()) { Serial << "deepsleep time is configured to " << deepSleepTime.get() << endl; } /* Publish default values */ if (lastPumpRunning != -1) { long waterDiff = waterRawSensor.getAverage() - lastWaterValue; //TODO attribute used water in ml to plantid } for (int i = 0; i < MAX_PLANTS; i++) { long raw = mPlants[i].getCurrentMoisture(); long pct = 100 - map(raw, MOIST_SENSOR_MIN_ADC, MOIST_SENSOR_MAX_ADC, 0, 100); if (raw == MISSING_SENSOR) { pct = 0; } if (pct < 0) { pct = 0; } if (pct > 100) { pct = 100; } mPlants[i].setProperty("moist").send(String(pct)); mPlants[i].setProperty("moistraw").send(String(raw)); } sensorWater.setProperty("remaining").send(String(waterLevelMax.get() - waterRawSensor.getAverage())); Serial << "W : " << waterRawSensor.getAverage() << " cm (" << String(waterLevelMax.get() - waterRawSensor.getAverage()) << "%)" << endl; lastWaterValue = waterRawSensor.getAverage(); sensorLipo.setProperty("percent").send(String(100 * lipoRawSensor.getAverage() / 4095)); sensorLipo.setProperty("volt").send(String(mBatteryVoltage)); sensorSolar.setProperty("percent").send(String((100 * solarRawSensor.getAverage()) / 4095)); sensorSolar.setProperty("volt").send(String(mSolarVoltage)); startupReason.setProperty("startupReason").send(String(wakeUpReason)); rtcLipoTempIndex = lipoSensorIndex.get(); rtcWaterTempIndex = waterSensorIndex.get(); float lipoTempCurrent = lipoTempSensor.getMedian(); float t2 = NAN; if (! isnan(lipoTempCurrent)) { sensorTemp.setProperty(TEMPERATUR_SENSOR_LIPO).send(String(lipoTempCurrent)); Serial << "Lipo Temperatur " << lipoTempCurrent << " °C " << endl; t2 = waterTempSensor.getMedian(); if (! isnan(t2)) { sensorTemp.setProperty(TEMPERATUR_SENSOR_WATER).send(String(t2)); Serial << "Water Temperatur " << lipoTempCurrent << " °C " << endl; } //give mqtt time, use via publish callback instead? delay(100); } else { int j=0; /* Activate the Sensors and measure the temperature again */ /* activate all sensors */ pinMode(OUTPUT_SENSOR, OUTPUT); digitalWrite(OUTPUT_SENSOR, HIGH); delay(100); sensors.begin(); for(j=0; j < TEMP_SENSOR_MEASURE_SERIES && sensors.getDeviceCount() == 0; j++) { delay(100); sensors.begin(); Serial << "Reset 1-Wire Bus" << endl; // Setup Battery sensor DS2438 battery.begin(); } for(j=0; j < TEMP_SENSOR_MEASURE_SERIES && isnan(lipoTempCurrent); j++) { delay(200); readTemp(); lipoTempCurrent = lipoTempSensor.getMedian(); t2 = waterTempSensor.getMedian(); Serial << "Temperatur Lipo:" << lipoTempCurrent << " °C Water : " << t2 << " °C" << endl; } if (! isnan(lipoTempCurrent)) { sensorTemp.setProperty(TEMPERATUR_SENSOR_LIPO).send(String(lipoTempCurrent)); Serial << "Lipo Temperatur " << lipoTempCurrent << " °C " << endl; t2 = waterTempSensor.getMedian(); if (! isnan(t2)) { sensorTemp.setProperty(TEMPERATUR_SENSOR_WATER).send(String(t2)); Serial << "Water Temperatur " << lipoTempCurrent << " °C " << endl; } } if (! isnan(mChipTemp)) { sensorTemp.setProperty(TEMPERATUR_SENSOR_CHIP).send(String(mChipTemp)); Serial << "Chip Temperatur " << mChipTemp << " °C " << endl; } /* deactivate the sensors */ digitalWrite(OUTPUT_SENSOR, LOW); } if (! isnan(lipoTempCurrent) && ! isnan(t2)) { bool lipoTempWarning = (lipoTempCurrent != LIPO_MAX_TEMPERATUR) && abs(lipoTempCurrent - t2) > LIPO_MAX_TEMPERATUR_DIFF; if (lipoTempWarning) { Serial.println("Lipo temp incorrect, panic mode deepsleep TODO"); //espDeepSleepFor(PANIK_MODE_DEEPSLEEP); //return; } } for (int i = 0; i < MAX_PLANTS; i++) { setMoistureTrigger(i, mPlants[i].mSetting->pSensorDry->get()); } bool hasWater = true; //FIXMEmWaterGone > waterLevelMin.get(); //FIXME no water warning message lastPumpRunning = determineNextPump(); if (lastPumpRunning != -1 && !hasWater) { Serial.println("Want to pump but no water"); } if (lastPumpRunning != -1 && hasWater) { if (mode3Active) { Serial.println("Mode 3 active, ignoring pump request"); } else { digitalWrite(OUTPUT_PUMP, HIGH); setLastActivationForPump(lastPumpRunning, getCurrentTime()); mPlants[lastPumpRunning].activatePump(); } } if (lastPumpRunning == -1 || !hasWater) { if (mSolarVoltage < SOLAR_CHARGE_MIN_VOLTAGE) { gotoMode2AfterThisTimestamp = getCurrentTime() + maxTimeBetweenMQTTUpdates.get(); Serial.print(mSolarVoltage); Serial.println("V! No pumps to activate and low light, deepSleepNight"); espDeepSleepFor(deepSleepNightTime.get()); rtcDeepSleepTime = deepSleepNightTime.get(); } else { gotoMode2AfterThisTimestamp = getCurrentTime() + maxTimeBetweenMQTTUpdates.get(); Serial.println("No pumps to activate, deepSleep"); espDeepSleepFor(deepSleepTime.get()); rtcDeepSleepTime = deepSleepTime.get(); } } else { gotoMode2AfterThisTimestamp = 0; Serial.println("Running pump, watering deepsleep"); espDeepSleepFor(wateringDeepSleep.get(), true); } } long getMoistureTrigger(int plantId) { if ((plantId >= 0) && (plantId < MAX_PLANTS)) { return rtcPlant[plantId].moistTrigger; } else { return -1; } } void setLastActivationForPump(int plantId, long value) { if ((plantId >= 0) && (plantId < MAX_PLANTS)) { rtcPlant[plantId].lastActive = value; } } long getLastActivationForPump(int plantId) { if ((plantId >= 0) && (plantId < MAX_PLANTS)) { return rtcPlant[plantId].lastActive; } else { return -1; } } /** * @brief Read ultra sensor JSN-SR04T-2.0 * Read the distance of the water level. */ void readDistance() { for (int i = 0; i < 5; i++) { long start = millis(); while (!Serial.available()) { if ((start + 500) < millis()) { Serial << "Abort reading hall sensor, not measurement after 200ms" << endl; waterRawSensor.add(0); return; } } unsigned int distance = getDistance(); if (distance > 0) { waterRawSensor.add(distance); } } } /** * @brief read all temperatur sensors * * @return int * 0 device can sleep, no change in the temperatures * 1 something changed and the temperatures shall be published via MQTT */ int readTemp() { int readAgain = TEMP_SENSOR_MEASURE_SERIES; int sensorCount = sensors.getDeviceCount(); int leaveMode1 = 0; while (readAgain > 0) { sensors.requestTemperatures(); if (sensorCount > 0) { if (rtcLipoTempIndex != -1) { float temp1Raw = sensors.getTempCByIndex(rtcLipoTempIndex); //Serial << "lipoTempCurrent: " << temp1Raw << endl; lipoTempSensor.add(temp1Raw); } else { Serial << "missing lipotemp, proceed to mode2: " << endl; leaveMode1 = 1; readAgain = 0; wakeUpReason = WAKEUP_REASON_RTC_MISSING; } } else { Serial << "No Sensors detected" << endl; return 1; } if (sensorCount > 1 && rtcWaterTempIndex != -1) { float temp2Raw = sensors.getTempCByIndex(rtcWaterTempIndex); //Serial << "waterTempCurrent: " << temp2Raw << endl; waterTempSensor.add(temp2Raw); } readAgain--; delay(50); } return leaveMode1; } /** * @brief Sensors, that are connected to GPIOs, mandatory for WIFI. * These sensors (ADC2) can only be read when no Wifi is used. */ bool readSensors() { bool leaveMode1 = false; Serial << "Read Sensors" << endl; readSystemSensors(); /* activate all sensors */ pinMode(OUTPUT_SENSOR, OUTPUT); digitalWrite(OUTPUT_SENSOR, HIGH); delay(20); sensors.begin(); /* wait before reading something */ for (int readCnt = 0; readCnt < AMOUNT_SENOR_QUERYS; readCnt++) { for (int i = 0; i < MAX_PLANTS; i++) { mPlants[i].addSenseValue(); } delay(10); } for (int i = 0; i < MAX_PLANTS; i++) { long current = mPlants[i].getCurrentMoisture(); long delta = abs(getLastMoisture(i) - current); bool tmp = (delta > MOIST_DELTA_TRIGGER_ADC); setLastMoisture(i, current); if (tmp) { wakeUpReason = WAKEUP_REASON_MOIST_CHANGE + i; leaveMode1 = true; Serial.printf("Mode2 start due to moist delta in plant %d with %ld \r\n", i, delta); } } if (abs(mBatteryVoltage - rtcLastBatteryVoltage) > LIPO_DELTA_VOLT_ADC) { wakeUpReason = WAKEUP_REASON_BATTERY_CHANGE; leaveMode1 = true; } if (abs(mSolarVoltage - rtcLastSolarVoltage) > SOLAR_DELTA_VOLT_ADC) { wakeUpReason = WAKEUP_REASON_SOLAR_CHANGE; leaveMode1 = true; } /* Read the distance and give the temperature sensors some time */ readDistance(); Serial << "Distance sensor " << waterRawSensor.getAverage() << " cm" << endl; // check if chip needs to start into full operational mode leaveMode1 |= readTemp(); if (abs(lipoTempSensor.getAverage() - rtcLastLipoTemp) > TEMPERATURE_DELTA_TRIGGER_IN_C) { leaveMode1 = true; wakeUpReason = WAKEUP_REASON_TEMP1_CHANGE; } if (abs(waterTempSensor.getAverage() - rtcLastWaterTemp) > TEMPERATURE_DELTA_TRIGGER_IN_C) { wakeUpReason = WAKEUP_REASON_TEMP2_CHANGE; leaveMode1 = true; } /* deactivate the sensors */ digitalWrite(OUTPUT_SENSOR, LOW); return leaveMode1; } void onHomieEvent(const HomieEvent &event) { switch (event.type) { case HomieEventType::SENDING_STATISTICS: Homie.getLogger() << "My statistics" << endl; break; case HomieEventType::MQTT_READY: Serial.printf("NTP Setup with server %s\r\n", ntpServer.get()); configTime(0, 0, ntpServer.get()); //wait for rtc sync? rtcDeepSleepTime = deepSleepTime.get(); Serial << "Setup plants" << endl; for (int i = 0; i < MAX_PLANTS; i++) { mPlants[i].postMQTTconnection(); } mode2MQTT(); break; case HomieEventType::READY_TO_SLEEP: Homie.getLogger() << "rtsleep" << endl; esp_deep_sleep_start(); break; case HomieEventType::OTA_STARTED: Homie.getLogger() << "OTA started" << endl; digitalWrite(OUTPUT_SENSOR, HIGH); digitalWrite(OUTPUT_PUMP, HIGH); gpio_hold_dis(GPIO_NUM_13); //pump pwr gpio_deep_sleep_hold_dis(); for (int i = 0; i < MAX_PLANTS; i++) { mPlants[i].deactivatePump(); } mode3Active = true; break; case HomieEventType::OTA_SUCCESSFUL: Homie.getLogger() << "OTA successfull" << endl; digitalWrite(OUTPUT_SENSOR, LOW); digitalWrite(OUTPUT_PUMP, LOW); ESP.restart(); break; default: break; } } int determineNextPump() { bool isLowLight = (mSolarVoltage > SOLAR_CHARGE_MIN_VOLTAGE || mSolarVoltage < SOLAR_CHARGE_MAX_VOLTAGE); //FIXME instead of for, use sorted by last activation index to ensure equal runtime? int pumpToUse = -1; for (int i = 0; i < MAX_PLANTS; i++) { Plant plant = mPlants[i]; long lastActivation = getLastActivationForPump(i); long sinceLastActivation = getCurrentTime() - lastActivation; //this pump is in cooldown skip it and disable low power mode trigger for it if (plant.isInCooldown(sinceLastActivation)) { Serial.printf("%d Skipping due to cooldown %ld / %ld \r\n", i, sinceLastActivation, plant.getCooldownInSeconds()); setMoistureTrigger(i, DEACTIVATED_PLANT); continue; } //skip as it is not low light if (!isLowLight && plant.isAllowedOnlyAtLowLight()) { Serial.printf("%d No pump required: due to light\r\n", i); continue; } if (plant.getCurrentMoisture() == MISSING_SENSOR && plant.isPumpTriggerActive()) { Serial.printf("%d No pump possible: missing sensor \r\n", i); continue; } if (plant.isPumpRequired()) { Serial.printf("%d Requested pumping\r\n", i); pumpToUse = i; } else if (plant.isPumpTriggerActive()) { Serial.printf("%d No pump required: moisture acceptable %f / %ld\r\n", i, plant.getCurrentMoisture(), plant.getSettingsMoisture()); } else { Serial.printf("%d No pump required: disabled pump trigger \r\n", i); } } return pumpToUse; } /** * @brief Handle Mqtt commands to keep controller alive * * @param range multiple transmitted values (not used for this function) * @param value single value * @return true when the command was parsed and executed succuessfully * @return false on errors when parsing the request */ bool aliveHandler(const HomieRange &range, const String &value) { if (range.isRange) return false; // only one controller is present if (value.equals("ON") || value.equals("On") || value.equals("1")) { mode3Active = true; } else { mode3Active = false; } return true; } void homieLoop() { } void systemInit() { WiFi.mode(WIFI_STA); Homie_setFirmware("PlantControl", FIRMWARE_VERSION); // Set default values //in seconds maxTimeBetweenMQTTUpdates.setDefaultValue(120); deepSleepTime.setDefaultValue(60); deepSleepNightTime.setDefaultValue(600); wateringDeepSleep.setDefaultValue(5); ntpServer.setDefaultValue("pool.ntp.org"); /* waterLevelMax 1000 */ /* 100cm in mm */ waterLevelMin.setDefaultValue(50); /* 5cm in mm */ waterLevelWarn.setDefaultValue(500); /* 50cm in mm */ waterLevelVol.setDefaultValue(5000); /* 5l in ml */ lipoSensorIndex.setDefaultValue(0); waterSensorIndex.setDefaultValue(-1); Homie.setLoopFunction(homieLoop); Homie.onEvent(onHomieEvent); //Homie.disableLogging(); Homie.setup(); mConfigured = Homie.isConfigured(); if (mConfigured) { for (int i = 0; i < MAX_PLANTS; i++) { mPlants[i].advertise(); } sensorTemp.advertise(TEMPERATUR_SENSOR_LIPO) .setName(TEMPERATURE_NAME) .setDatatype(NUMBER_TYPE) .setUnit(TEMPERATURE_UNIT); sensorTemp.advertise(TEMPERATUR_SENSOR_WATER) .setName(TEMPERATURE_NAME) .setDatatype(NUMBER_TYPE) .setUnit(TEMPERATURE_UNIT); sensorTemp.advertise(TEMPERATUR_SENSOR_CHIP) .setName(TEMPERATURE_NAME) .setDatatype(NUMBER_TYPE) .setUnit(TEMPERATURE_UNIT); sensorLipo.advertise("percent") .setName("Percent") .setDatatype(NUMBER_TYPE) .setUnit("%"); sensorLipo.advertise("volt") .setName("Volt") .setDatatype(NUMBER_TYPE) .setUnit("V"); sensorSolar.advertise("percent") .setName("Percent") .setDatatype(NUMBER_TYPE) .setUnit("%"); sensorSolar.advertise("volt") .setName("Volt") .setDatatype(NUMBER_TYPE) .setUnit("V"); sensorWater.advertise("remaining").setDatatype(NUMBER_TYPE).setUnit("%"); startupReason.advertise("startupReason").setDatatype(NUMBER_TYPE).setUnit("Enum"); } stayAlive.advertise("alive").setName("Alive").setDatatype(NUMBER_TYPE).settable(aliveHandler); } bool mode1() { Serial.println("==== Mode 1 ===="); Serial << getCurrentTime() << " curtime" << endl; bool deltaTrigger = readSensors(); //queue sensor values for if (deltaTrigger) { Serial.println("1 delta triggered, going to mode2"); return true; } if (rtcDeepSleepTime == 0) { wakeUpReason = WAKEUP_REASON_RTC_MISSING; Serial.println("1 missing rtc value, going to mode2"); return true; } for (int i = 0; i < MAX_PLANTS; i++) { long trigger = getMoistureTrigger(i); if (trigger == 0) { wakeUpReason = WAKEUP_REASON_RTC_MISSING; Serial << "Missing rtc trigger " << i << endl; return true; } if (trigger == DEACTIVATED_PLANT) { continue; } long raw = mPlants[i].getCurrentMoisture(); if (raw == MISSING_SENSOR) { continue; } if (raw > trigger) { Serial << "plant " << i << " dry " << raw << " / " << trigger << " starting mode 2" << endl; wakeUpReason = WAKEUP_REASON_PLANT_DRY + i; return true; } } //check how long it was already in mode1 if to long goto mode2 long cTime = getCurrentTime(); if (cTime < 100000) { Serial.println("Starting mode 2 due to missing ntp"); //missing ntp time boot to mode3 wakeUpReason = WAKEUP_REASON_TIME_UNSET; return true; } if (gotoMode2AfterThisTimestamp < cTime) { wakeUpReason = WAKEUP_REASON_MODE2_WAKEUP_TIMER; Serial.println("Starting mode 2 after specified mode1 time"); return true; } else { Serial << "Mode2 Timer " << gotoMode2AfterThisTimestamp << " curtime " << cTime << endl; } return false; } void mode2() { Serial.println("==== Mode 2 ===="); systemInit(); /* Jump into Mode 3, if not configured */ if (!mConfigured) { Serial.println("==== Mode 3 ===="); mode3Active = true; } } /** * @brief Startup function * Is called once, the controller is started */ void setup() { Serial.begin(9600); Serial.setTimeout(1000); // Set timeout of 1 second Serial << endl << endl; /* Intialize Plant */ for (int i = 0; i < MAX_PLANTS; i++) { mPlants[i].init(); } /* Intialize inputs and outputs */ pinMode(SENSOR_LIPO, ANALOG); pinMode(SENSOR_SOLAR, ANALOG); /* read button */ pinMode(BUTTON, INPUT); /* Power pins */ pinMode(OUTPUT_PUMP, OUTPUT); /* Disable Wifi and bluetooth */ WiFi.mode(WIFI_OFF); if (HomieInternals::MAX_CONFIG_SETTING_SIZE < MAX_CONFIG_SETTING_ITEMS) { //increase the config settings to 50 and the json to 3000 Serial << "Limits.hpp" << endl; } // Big TODO use here the settings in RTC_Memory //Panik mode, the Lipo is empty, sleep a long long time: if ((mBatteryVoltage < MINIMUM_LIPO_VOLT) && (mBatteryVoltage > NO_LIPO_VOLT)) { Serial << PANIK_MODE_DEEPSLEEP << " s lipo " << mBatteryVoltage << "V" << endl; esp_sleep_enable_timer_wakeup(PANIK_MODE_DEEPSLEEP_US); esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_PERIPH, ESP_PD_OPTION_OFF); esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_FAST_MEM, ESP_PD_OPTION_OFF); esp_sleep_pd_config(ESP_PD_DOMAIN_XTAL, ESP_PD_OPTION_ON); esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_SLOW_MEM, ESP_PD_OPTION_OFF); esp_deep_sleep_start(); } if (mode1()) { mode2(); } else { Serial.println("nop"); espDeepSleepFor(rtcDeepSleepTime); } } /** * @brief Cyclic call * Executs the Homie base functionallity or triggers sleeping, if requested. */ void loop() { if (!mDeepsleep || mode3Active) { Homie.loop(); } else { Serial << "Bye" << endl; Serial.flush(); esp_deep_sleep_start(); } if (millis() > 30000 && !mode3Active) { Serial << (millis() / 1000) << "not terminated watchdog putting to sleep" << endl; Serial.flush(); espDeepSleepFor(rtcDeepSleepTime); } /* Toggel Senor LED to visualize mode 3 */ if (mode3Active) { if (nextBlink < millis()) { nextBlink = millis() + 500; digitalWrite(OUTPUT_SENSOR, !digitalRead(OUTPUT_SENSOR)); } } } /** @}*/