use bq34z100::{Bq34Z100Error, Bq34z100g1, Bq34z100g1Driver}; //mod config; use chrono_tz::Europe::Berlin; use embedded_svc::wifi::{ AccessPointConfiguration, AccessPointInfo, AuthMethod, ClientConfiguration, Configuration, }; use esp_idf_hal::i2c::{I2cConfig, I2cDriver, I2cError}; use esp_idf_hal::units::FromValueType; use esp_idf_svc::eventloop::EspSystemEventLoop; use esp_idf_svc::ipv4::IpInfo; use esp_idf_svc::mqtt::client::QoS::AtLeastOnce; use esp_idf_svc::mqtt::client::QoS::ExactlyOnce; use esp_idf_svc::mqtt::client::{EspMqttClient, LwtConfiguration, MqttClientConfiguration}; use esp_idf_svc::nvs::EspDefaultNvsPartition; use esp_idf_svc::wifi::config::{ScanConfig, ScanType}; use esp_idf_svc::wifi::EspWifi; use measurements::Temperature; use plant_ctrl2::sipo::ShiftRegister40; use anyhow::anyhow; use anyhow::{bail, Ok, Result}; use std::ffi::CString; use std::fs::File; use std::path::Path; use chrono::{DateTime, NaiveDateTime, Utc}; use ds18b20::Ds18b20; use std::result::Result::Ok as OkStd; use std::str::FromStr; use std::sync::atomic::AtomicBool; use std::sync::{Arc, Mutex}; use std::time::Duration; use embedded_hal::digital::OutputPin; use esp_idf_hal::adc::{attenuation, AdcChannelDriver, AdcDriver}; use esp_idf_hal::delay::Delay; use esp_idf_hal::gpio::{AnyInputPin, Gpio39, Gpio4, InputOutput, Level, PinDriver, Pull}; use esp_idf_hal::pcnt::{ PcntChannel, PcntChannelConfig, PcntControlMode, PcntCountMode, PcntDriver, PinIndex, }; use esp_idf_hal::prelude::Peripherals; use esp_idf_hal::reset::ResetReason; use esp_idf_svc::sntp::{self, SyncStatus}; use esp_idf_svc::systime::EspSystemTime; use esp_idf_sys::{esp, gpio_hold_dis, gpio_hold_en, vTaskDelay, EspError}; use one_wire_bus::OneWire; use crate::config::{self, Config, WifiConfig}; use crate::STAY_ALIVE; pub const PLANT_COUNT: usize = 8; const PINS_PER_PLANT: usize = 5; const PLANT_PUMP_OFFSET: usize = 0; const PLANT_FAULT_OFFSET: usize = 1; const PLANT_MOIST_PUMP_OFFSET: usize = 2; const PLANT_MOIST_A_OFFSET: usize = 3; const PLANT_MOIST_B_OFFSET: usize = 4; const SPIFFS_PARTITION_NAME: &str = "storage"; const WIFI_CONFIG_FILE: &str = "/spiffs/wifi.cfg"; const CONFIG_FILE: &str = "/spiffs/config.cfg"; const TANK_MULTI_SAMPLE: usize = 11; #[link_section = ".rtc.data"] static mut LAST_WATERING_TIMESTAMP: [i64; PLANT_COUNT] = [0; PLANT_COUNT]; #[link_section = ".rtc.data"] static mut CONSECUTIVE_WATERING_PLANT: [u32; PLANT_COUNT] = [0; PLANT_COUNT]; #[link_section = ".rtc.data"] static mut LOW_VOLTAGE_DETECTED: bool = false; pub struct FileSystemSizeInfo { pub total_size: usize, pub used_size: usize, pub free_size: usize, } #[derive(strum::Display)] pub enum ClearConfigType { WifiConfig, Config, None, } #[derive(Debug)] pub enum Sensor { A, B, PUMP, } pub trait PlantCtrlBoardInteraction { fn time(&mut self) -> Result>; fn wifi( &mut self, ssid: heapless::String<32>, password: Option>, max_wait: u32, ) -> Result; fn sntp(&mut self, max_wait: u32) -> Result>; fn mount_file_system(&mut self) -> Result<()>; fn file_system_size(&mut self) -> Result; fn state_charge_percent(&mut self) -> Result; fn remaining_milli_ampere_hour(&mut self) -> Result; fn max_milli_ampere_hour(&mut self) -> Result; fn design_milli_ampere_hour(&mut self) -> Result; fn voltage_milli_volt(&mut self) -> Result; fn average_current_milli_ampere(&mut self) -> Result; fn cycle_count(&mut self) -> Result; fn state_health_percent(&mut self) -> Result; fn general_fault(&mut self, enable: bool); fn is_day(&self) -> bool; fn water_temperature_c(&mut self) -> Result; fn tank_sensor_percent(&mut self) -> Result; fn set_low_voltage_in_cycle(&mut self); fn clear_low_voltage_in_cycle(&mut self); fn low_voltage_in_cycle(&mut self) -> bool; fn any_pump(&mut self, enabled: bool) -> Result<()>; //keep state during deepsleep fn light(&mut self, enable: bool) -> Result<()>; fn measure_moisture_hz(&self, plant: usize, sensor: Sensor) -> Result; fn pump(&self, plant: usize, enable: bool) -> Result<()>; fn last_pump_time(&self, plant: usize) -> chrono::DateTime; fn store_last_pump_time(&mut self, plant: usize, time: chrono::DateTime); fn store_consecutive_pump_count(&mut self, plant: usize, count: u32); fn consecutive_pump_count(&mut self, plant: usize) -> u32; //keep state during deepsleep fn fault(&self, plant: usize, enable: bool); //config fn is_config_reset(&mut self) -> bool; fn remove_configs(&mut self) -> Result; fn get_config(&mut self) -> Result; fn set_config(&mut self, wifi: &Config) -> Result<()>; fn get_wifi(&mut self) -> Result; fn set_wifi(&mut self, wifi: &WifiConfig) -> Result<()>; fn wifi_ap(&mut self) -> Result<()>; fn wifi_scan(&mut self) -> Result>; fn test(&mut self) -> Result<()>; fn is_wifi_config_file_existant(&mut self) -> bool; fn mqtt(&mut self, config: &Config) -> Result<()>; fn mqtt_publish(&mut self, config: &Config, subtopic: &str, message: &[u8]) -> Result<()>; } pub trait CreatePlantHal<'a> { fn create() -> Result>>; } pub struct PlantHal {} pub struct PlantCtrlBoard<'a> { shift_register: ShiftRegister40< PinDriver<'a, esp_idf_hal::gpio::Gpio21, InputOutput>, PinDriver<'a, esp_idf_hal::gpio::Gpio22, InputOutput>, PinDriver<'a, esp_idf_hal::gpio::Gpio19, InputOutput>, >, tank_driver: AdcDriver<'a, esp_idf_hal::adc::ADC1>, tank_channel: esp_idf_hal::adc::AdcChannelDriver<'a, { attenuation::DB_11 }, Gpio39>, solar_is_day: PinDriver<'a, esp_idf_hal::gpio::Gpio25, esp_idf_hal::gpio::Input>, boot_button: PinDriver<'a, esp_idf_hal::gpio::Gpio0, esp_idf_hal::gpio::Input>, signal_counter: PcntDriver<'a>, light: PinDriver<'a, esp_idf_hal::gpio::Gpio26, InputOutput>, main_pump: PinDriver<'a, esp_idf_hal::gpio::Gpio23, InputOutput>, tank_power: PinDriver<'a, esp_idf_hal::gpio::Gpio27, InputOutput>, general_fault: PinDriver<'a, esp_idf_hal::gpio::Gpio13, InputOutput>, pub wifi_driver: EspWifi<'a>, one_wire_bus: OneWire>, mqtt_client: Option>, battery_driver: Bq34z100g1Driver, Delay>, } impl PlantCtrlBoardInteraction for PlantCtrlBoard<'_> { fn is_day(&self) -> bool { self.solar_is_day.get_level().into() } fn water_temperature_c(&mut self) -> Result { let mut delay = Delay::new_default(); self.one_wire_bus .reset(&mut delay) .map_err(|err| -> anyhow::Error { anyhow!("Missing attribute: {:?}", err) })?; let first = self.one_wire_bus.devices(false, &mut delay).next(); if first.is_none() { bail!("Not found any one wire Ds18b20"); } let device_address = first .unwrap() .map_err(|err| -> anyhow::Error { anyhow!("Missing attribute: {:?}", err) })?; let water_temp_sensor = Ds18b20::new::(device_address) .map_err(|err| -> anyhow::Error { anyhow!("Missing attribute: {:?}", err) })?; water_temp_sensor .start_temp_measurement(&mut self.one_wire_bus, &mut delay) .map_err(|err| -> anyhow::Error { anyhow!("Missing attribute: {:?}", err) })?; ds18b20::Resolution::Bits12.delay_for_measurement_time(&mut delay); let sensor_data = water_temp_sensor .read_data(&mut self.one_wire_bus, &mut delay) .map_err(|err| -> anyhow::Error { anyhow!("Missing attribute: {:?}", err) })?; if sensor_data.temperature == 85_f32 { bail!("Ds18b20 dummy temperature returned"); } Ok(sensor_data.temperature / 10_f32) } fn tank_sensor_percent(&mut self) -> Result { let delay = Delay::new_default(); self.tank_power.set_high()?; //let stabilize delay.delay_ms(100); unsafe { vTaskDelay(100); } let mut store = [0_u16; TANK_MULTI_SAMPLE]; for multisample in 0..TANK_MULTI_SAMPLE { let value = self.tank_driver.read(&mut self.tank_channel)?; store[multisample] = value; } store.sort(); let median = store[6] as f32 / 1000_f32; let config_open_voltage_mv = 3.0; if config_open_voltage_mv < median { self.tank_power.set_low()?; bail!( "Tank sensor missing, open loop voltage {} on tank sensor input {}", config_open_voltage_mv, median ); } let r2 = median * 50.0 / (3.3 - median); let mut percent = r2 / 190_f32 * 100_f32; percent = percent.clamp(0.0, 100.0); let quantizised = quantize_to_next_5_percent(percent as f64) as u16; println!( "Tank sensor raw {} percent {} quantized {}", median, percent, quantizised ); return Ok(quantizised); } fn set_low_voltage_in_cycle(&mut self) { unsafe { LOW_VOLTAGE_DETECTED = true; } } fn clear_low_voltage_in_cycle(&mut self) { unsafe { LOW_VOLTAGE_DETECTED = false; } } fn light(&mut self, enable: bool) -> Result<()> { unsafe { gpio_hold_dis(self.light.pin()) }; self.light.set_state(enable.into())?; unsafe { gpio_hold_en(self.light.pin()) }; Ok(()) } fn pump(&self, plant: usize, enable: bool) -> Result<()> { let index = plant * PINS_PER_PLANT + PLANT_PUMP_OFFSET; //currently infailable error, keep for future as result anyway self.shift_register.decompose()[index] .set_state(enable.into()) .unwrap(); Ok(()) } fn last_pump_time(&self, plant: usize) -> chrono::DateTime { let ts = unsafe { LAST_WATERING_TIMESTAMP }[plant]; let timestamp = NaiveDateTime::from_timestamp_millis(ts).unwrap(); DateTime::::from_naive_utc_and_offset(timestamp, Utc) } fn store_last_pump_time(&mut self, plant: usize, time: chrono::DateTime) { unsafe { LAST_WATERING_TIMESTAMP[plant] = time.timestamp_millis(); } } fn store_consecutive_pump_count(&mut self, plant: usize, count: u32) { unsafe { CONSECUTIVE_WATERING_PLANT[plant] = count; } } fn consecutive_pump_count(&mut self, plant: usize) -> u32 { unsafe { return CONSECUTIVE_WATERING_PLANT[plant]; } } fn fault(&self, plant: usize, enable: bool) { let index = plant * PINS_PER_PLANT + PLANT_FAULT_OFFSET; self.shift_register.decompose()[index] .set_state(enable.into()) .unwrap() } fn low_voltage_in_cycle(&mut self) -> bool { unsafe { return LOW_VOLTAGE_DETECTED; } } fn any_pump(&mut self, enable: bool) -> Result<()> { { self.main_pump.set_state(enable.into()).unwrap(); Ok(()) } } fn time(&mut self) -> Result> { let time = EspSystemTime {}.now().as_millis(); let smaller_time = time as i64; let local_time = NaiveDateTime::from_timestamp_millis(smaller_time) .ok_or(anyhow!("could not convert timestamp"))?; Ok(local_time.and_utc()) } fn sntp(&mut self, max_wait_ms: u32) -> Result> { let sntp = sntp::EspSntp::new_default()?; let mut counter = 0; while sntp.get_sync_status() != SyncStatus::Completed { let delay = Delay::new_default(); delay.delay_ms(100); counter += 100; if counter > max_wait_ms { bail!("Reached sntp timeout, aborting") } } self.time() } fn measure_moisture_hz(&self, plant: usize, sensor: Sensor) -> Result { self.signal_counter.counter_pause()?; self.signal_counter.counter_clear()?; // let offset = match sensor { Sensor::A => PLANT_MOIST_A_OFFSET, Sensor::B => PLANT_MOIST_B_OFFSET, Sensor::PUMP => PLANT_MOIST_PUMP_OFFSET, }; let index = plant * PINS_PER_PLANT + offset; let delay = Delay::new_default(); let measurement = 100; let factor = 1000 as f32 / measurement as f32; self.shift_register.decompose()[index].set_high().unwrap(); //give some time to stabilize delay.delay_ms(10); self.signal_counter.counter_resume()?; delay.delay_ms(measurement); self.signal_counter.counter_pause()?; self.shift_register.decompose()[index].set_low().unwrap(); let unscaled = self.signal_counter.get_counter_value()? as i32; let hz = (unscaled as f32 * factor) as i32; println!("Measuring {:?} @ {} with {}", sensor, plant, hz); Ok(hz) } fn general_fault(&mut self, enable: bool) { self.general_fault.set_state(enable.into()).unwrap(); } fn wifi_ap(&mut self) -> Result<()> { let apconfig = AccessPointConfiguration { ssid: heapless::String::from_str("PlantCtrl").unwrap(), auth_method: AuthMethod::None, ssid_hidden: false, ..Default::default() }; let clientconfig = ClientConfiguration::default(); self.wifi_driver .set_configuration(&Configuration::Mixed(clientconfig, apconfig))?; self.wifi_driver.start()?; Ok(()) } fn wifi( &mut self, ssid: heapless::String<32>, password: Option>, max_wait: u32, ) -> Result { match password { Some(pw) => { //TODO expect error due to invalid pw or similar! //call this during configuration and check if works, revert to config mode if not self.wifi_driver.set_configuration(&Configuration::Client( ClientConfiguration { ssid: ssid, password: pw, ..Default::default() }, ))?; } None => { self.wifi_driver .set_configuration(&Configuration::Client(ClientConfiguration { ssid: ssid, auth_method: AuthMethod::None, ..Default::default() })) .unwrap(); } } self.wifi_driver.start()?; self.wifi_driver.connect()?; let delay = Delay::new_default(); let mut counter = 0_u32; while !self.wifi_driver.is_connected()? { println!("Waiting for station connection"); delay.delay_ms(250); counter += 250; if counter > max_wait { //ignore these errors, wifi will not be used this self.wifi_driver.disconnect().unwrap_or(()); self.wifi_driver.stop().unwrap_or(()); bail!("Did not manage wifi connection within timeout"); } } println!("Should be connected now"); while !self.wifi_driver.is_up().unwrap() { println!("Waiting for network being up"); delay.delay_ms(250); counter += 250; if counter > max_wait { //ignore these errors, wifi will not be used this self.wifi_driver.disconnect().unwrap_or(()); self.wifi_driver.stop().unwrap_or(()); bail!("Did not manage wifi connection within timeout"); } } //update freertos registers ;) let address = self.wifi_driver.sta_netif().get_ip_info().unwrap(); println!("IP info: {:?}", address); Ok(address) } fn mount_file_system(&mut self) -> Result<()> { let base_path = CString::new("/spiffs")?; let storage = CString::new(SPIFFS_PARTITION_NAME)?; let conf = esp_idf_sys::esp_vfs_spiffs_conf_t { base_path: base_path.as_ptr(), partition_label: storage.as_ptr(), max_files: 2, format_if_mount_failed: true, }; unsafe { esp_idf_sys::esp!(esp_idf_sys::esp_vfs_spiffs_register(&conf))?; Ok(()) } } fn file_system_size(&mut self) -> Result { let storage = CString::new(SPIFFS_PARTITION_NAME)?; let mut total_size = 0; let mut used_size = 0; unsafe { esp_idf_sys::esp!(esp_idf_sys::esp_spiffs_info( storage.as_ptr(), &mut total_size, &mut used_size ))?; } Ok(FileSystemSizeInfo { total_size, used_size, free_size: total_size - used_size, }) } fn is_config_reset(&mut self) -> bool { self.boot_button.get_level() == Level::Low } fn remove_configs(&mut self) -> Result { let config = Path::new(CONFIG_FILE); if config.exists() { println!("Removing config"); std::fs::remove_file(config)?; return Ok(ClearConfigType::Config); } let wifi_config = Path::new(WIFI_CONFIG_FILE); if wifi_config.exists() { println!("Removing wifi config"); std::fs::remove_file(wifi_config)?; return Ok(ClearConfigType::WifiConfig); } Ok(ClearConfigType::None) } fn get_wifi(&mut self) -> Result { let cfg = File::open(WIFI_CONFIG_FILE)?; let config: WifiConfig = serde_json::from_reader(cfg)?; Ok(config) } fn set_wifi(&mut self, wifi: &WifiConfig) -> Result<()> { let mut cfg = File::create(WIFI_CONFIG_FILE)?; serde_json::to_writer(&mut cfg, &wifi)?; println!("Wrote wifi config {}", wifi); Ok(()) } fn get_config(&mut self) -> Result { let cfg = File::open(CONFIG_FILE)?; let mut config: Config = serde_json::from_reader(cfg)?; //remove duplicate end of topic if config.base_topic.ends_with("/") { config.base_topic.pop(); } Ok(config) } fn set_config(&mut self, config: &Config) -> Result<()> { let mut cfg = File::create(CONFIG_FILE)?; serde_json::to_writer(&mut cfg, &config)?; println!("Wrote config config {:?}", config); Ok(()) } fn wifi_scan(&mut self) -> Result> { //remove this parts for i in 1..11 { println!("Scanning channel {}", i); self.wifi_driver.start_scan( &ScanConfig { scan_type: ScanType::Passive(Duration::from_secs(1)), show_hidden: false, channel: Some(i), ..Default::default() }, true, )?; let sr = self.wifi_driver.get_scan_result()?; for r in sr.iter() { println!("Found wifi {}", r.ssid); } } self.wifi_driver.start_scan( &ScanConfig { scan_type: ScanType::Passive(Duration::from_secs(1)), show_hidden: false, ..Default::default() }, true, )?; Ok(self.wifi_driver.get_scan_result()?) } fn test(&mut self) -> Result<()> { self.general_fault(true); unsafe { vTaskDelay(100) }; self.general_fault(false); unsafe { vTaskDelay(100) }; self.any_pump(true)?; unsafe { vTaskDelay(500) }; self.any_pump(false)?; unsafe { vTaskDelay(500) }; self.light(true)?; unsafe { vTaskDelay(500) }; self.light(false)?; unsafe { vTaskDelay(500) }; for i in 0..8 { self.fault(i, true); unsafe { vTaskDelay(500) }; self.fault(i, false); unsafe { vTaskDelay(500) }; } for i in 0..8 { self.pump(i, true)?; unsafe { vTaskDelay(100) }; self.pump(i, false)?; unsafe { vTaskDelay(100) }; } for i in 0..8 { self.measure_moisture_hz(i, Sensor::A)?; } for i in 0..8 { self.measure_moisture_hz(i, Sensor::B)?; } for i in 0..8 { self.measure_moisture_hz(i, Sensor::PUMP)?; } Ok(()) } fn is_wifi_config_file_existant(&mut self) -> bool { let config = Path::new(CONFIG_FILE); config.exists() } fn mqtt(&mut self, config: &Config) -> Result<()> { let last_will_topic = format!("{}/state", config.base_topic); let mqtt_client_config = MqttClientConfiguration { lwt: Some(LwtConfiguration { topic: &last_will_topic, payload: "lost".as_bytes(), qos: AtLeastOnce, retain: true, }), keep_alive_interval : Some(Duration::from_secs(60*60*2)), //room for improvement ..Default::default() }; let round_trip_ok = Arc::new(AtomicBool::new(false)); let round_trip_topic = format!("{}/internal/roundtrip", config.base_topic); let stay_alive_topic = format!("{}/stay_alive", config.base_topic); println!("Round trip topic is {}", round_trip_topic); println!("Stay alive topic is {}", stay_alive_topic); let stay_alive_topic_copy = stay_alive_topic.clone(); let round_trip_topic_copy = round_trip_topic.clone(); let round_trip_ok_copy = round_trip_ok.clone(); let mut client = EspMqttClient::new_cb(&config.mqtt_url, &mqtt_client_config, move |event| { let payload = event.payload(); match payload { embedded_svc::mqtt::client::EventPayload::Received { id: _, topic, data, details: _, } => { let data = String::from_utf8_lossy(data); if let Some(topic) = topic { //todo use enums if topic.eq(round_trip_topic_copy.as_str()) { round_trip_ok_copy .store(true, std::sync::atomic::Ordering::Relaxed); } else if topic.eq(stay_alive_topic_copy.as_str()) { let value = data.eq_ignore_ascii_case("true") || data.eq_ignore_ascii_case("1"); println!("Received stay alive with value {}", value); STAY_ALIVE.store(value, std::sync::atomic::Ordering::Relaxed); } else { println!("Unknown topic recieved {}", topic); } } } _ => {} } })?; //subscribe to roundtrip client.subscribe(round_trip_topic.as_str(), ExactlyOnce)?; client.subscribe(stay_alive_topic.as_str(), ExactlyOnce)?; //publish to roundtrip client.publish( round_trip_topic.as_str(), ExactlyOnce, false, "online_test".as_bytes(), )?; let wait_for_roundtrip = 0; while wait_for_roundtrip < 100 { match round_trip_ok.load(std::sync::atomic::Ordering::Relaxed) { true => { println!("Round trip registered, proceeding"); self.mqtt_client = Some(client); return Ok(()); } false => { unsafe { vTaskDelay(10) }; } } } bail!("Mqtt did not complete roundtrip in time"); } fn mqtt_publish(&mut self, config: &Config, subtopic: &str, message: &[u8]) -> Result<()> { if !subtopic.starts_with("/") { println!("Subtopic without / at start {}", subtopic); bail!("Subtopic without / at start {}", subtopic); } if subtopic.len() > 192 { println!("Subtopic exceeds 192 chars {}", subtopic); bail!("Subtopic exceeds 192 chars {}", subtopic); } if self.mqtt_client.is_none() { println!("Not connected to mqtt"); bail!("Not connected to mqtt"); } let client = self.mqtt_client.as_mut().unwrap(); let mut full_topic: heapless::String<256> = heapless::String::new(); if full_topic.push_str(&config.base_topic).is_err() { println!("Some error assembling full_topic 1"); bail!("Some error assembling full_topic 1") }; if full_topic.push_str(subtopic).is_err() { println!("Some error assembling full_topic 2"); bail!("Some error assembling full_topic 2") }; client.publish( &full_topic, embedded_svc::mqtt::client::QoS::ExactlyOnce, true, message, )?; return Ok(()); } fn state_charge_percent(&mut self) -> Result { match self.battery_driver.state_of_charge() { OkStd(r) => Ok(r), Err(err) => bail!("Error reading SoC {:?}", err), } } fn remaining_milli_ampere_hour(&mut self) -> Result { match self.battery_driver.remaining_capacity() { OkStd(r) => Ok(r), Err(err) => bail!("Error reading Remaining Capacity {:?}", err), } } fn max_milli_ampere_hour(&mut self) -> Result { match self.battery_driver.full_charge_capacity() { OkStd(r) => Ok(r), Err(err) => bail!("Error reading Full Charge Capacity {:?}", err), } } fn design_milli_ampere_hour(&mut self) -> Result { match self.battery_driver.design_capacity() { OkStd(r) => Ok(r), Err(err) => bail!("Error reading Design Capacity {:?}", err), } } fn voltage_milli_volt(&mut self) -> Result { return match self.battery_driver.voltage() { OkStd(r) => Ok(r), Err(err) => bail!("Error reading voltage {:?}", err), }; } fn average_current_milli_ampere(&mut self) -> Result { match self.battery_driver.average_current() { OkStd(r) => Ok(r), Err(err) => bail!("Error reading Average Current {:?}", err), } } fn cycle_count(&mut self) -> Result { match self.battery_driver.cycle_count() { OkStd(r) => Ok(r), Err(err) => bail!("Error reading Cycle Count {:?}", err), } } fn state_health_percent(&mut self) -> Result { match self.battery_driver.state_of_health() { OkStd(r) => Ok(r as u8), Err(err) => bail!("Error reading State of Health {:?}", err), } } } fn print_battery( battery_driver: &mut Bq34z100g1Driver, ) -> Result<(), Bq34Z100Error> { let fwversion = battery_driver.fw_version().unwrap_or_else(|e| { println!("Firmeware {:?}", e); 0 }); println!("fw version is {}", fwversion); let design_capacity = battery_driver.design_capacity().unwrap_or_else(|e| { println!("Design capacity {:?}", e); 0 }); println!("Design Capacity {}", design_capacity); if design_capacity == 1000 { println!("Still stock configuring battery, readouts are likely to be wrong!"); } let flags = battery_driver.get_flags_decoded()?; println!("Flags {:?}", flags); let chem_id = battery_driver.chem_id().unwrap_or_else(|e| { println!("Chemid {:?}", e); 0 }); let bat_temp = battery_driver.internal_temperature().unwrap_or_else(|e| { println!("Bat Temp {:?}", e); 0 }); let temp_c = Temperature::from_kelvin(bat_temp as f64 / 10_f64).as_celsius(); let voltage = battery_driver.voltage().unwrap_or_else(|e| { println!("Bat volt {:?}", e); 0 }); let current = battery_driver.current().unwrap_or_else(|e| { println!("Bat current {:?}", e); 0 }); let state = battery_driver.state_of_charge().unwrap_or_else(|e| { println!("Bat Soc {:?}", e); 0 }); let charge_voltage = battery_driver.charge_voltage().unwrap_or_else(|e| { println!("Bat Charge Volt {:?}", e); 0 }); let charge_current = battery_driver.charge_current().unwrap_or_else(|e| { println!("Bat Charge Current {:?}", e); 0 }); println!("ChemId: {} Current voltage {} and current {} with charge {}% and temp {} CVolt: {} CCur {}", chem_id, voltage, current, state, temp_c, charge_voltage, charge_current); let _ = battery_driver.unsealed(); let _ = battery_driver.it_enable(); return Result::Ok(()); } impl CreatePlantHal<'_> for PlantHal { fn create() -> Result>> { let peripherals = Peripherals::take()?; let i2c = peripherals.i2c1; let config = I2cConfig::new() .scl_enable_pullup(false) .sda_enable_pullup(false) .baudrate(10_u32.kHz().into()); let scl = peripherals.pins.gpio16; let sda = peripherals.pins.gpio17; let driver = I2cDriver::new(i2c, sda, scl, &config).unwrap(); let i2c_port = driver.port(); esp!(unsafe { esp_idf_sys::i2c_set_timeout(i2c_port, 1048000) }).unwrap(); let mut battery_driver: Bq34z100g1Driver = Bq34z100g1Driver { i2c: driver, delay: Delay::new_default(), flash_block_data: [0; 32], }; let mut clock = PinDriver::input_output(peripherals.pins.gpio21)?; clock.set_pull(Pull::Floating).unwrap(); let mut latch = PinDriver::input_output(peripherals.pins.gpio22)?; latch.set_pull(Pull::Floating).unwrap(); let mut data = PinDriver::input_output(peripherals.pins.gpio19)?; data.set_pull(Pull::Floating).unwrap(); let shift_register = ShiftRegister40::new(clock.into(), latch.into(), data.into()); for mut pin in shift_register.decompose() { pin.set_low().unwrap(); } let mut one_wire_pin = PinDriver::input_output_od(peripherals.pins.gpio4)?; one_wire_pin.set_pull(Pull::Floating).unwrap(); //TODO make to none if not possible to init //init,reset rtc memory depending on cause let reasons = ResetReason::get(); let reset_store = match reasons { ResetReason::Software => false, ResetReason::ExternalPin => false, ResetReason::Watchdog => true, ResetReason::Sdio => true, ResetReason::Panic => true, ResetReason::InterruptWatchdog => true, ResetReason::PowerOn => true, ResetReason::Unknown => true, ResetReason::Brownout => true, ResetReason::TaskWatchdog => true, ResetReason::DeepSleep => false, }; if reset_store { println!("Clear and reinit RTC store"); unsafe { LAST_WATERING_TIMESTAMP = [0; PLANT_COUNT]; CONSECUTIVE_WATERING_PLANT = [0; PLANT_COUNT]; LOW_VOLTAGE_DETECTED = false; }; } else { println!("Keeping RTC store"); unsafe { println!( "Current low voltage detection is {:?}", LOW_VOLTAGE_DETECTED ); for i in 0..PLANT_COUNT { let smaller_time = LAST_WATERING_TIMESTAMP[i]; let local_time = NaiveDateTime::from_timestamp_millis(smaller_time) .ok_or(anyhow!("could not convert timestamp"))?; let utc_time = local_time.and_utc(); let europe_time = utc_time.with_timezone(&Berlin); println!( "LAST_WATERING_TIMESTAMP[{}] = {} as europe {}", i, LAST_WATERING_TIMESTAMP[i], europe_time ); } for i in 0..PLANT_COUNT { println!( "CONSECUTIVE_WATERING_PLANT[{}] = {}", i, CONSECUTIVE_WATERING_PLANT[i] ); } } } let mut counter_unit1 = PcntDriver::new( peripherals.pcnt0, Some(peripherals.pins.gpio18), Option::::None, Option::::None, Option::::None, )?; println!("Channel config start"); counter_unit1.channel_config( PcntChannel::Channel0, PinIndex::Pin0, PinIndex::Pin1, &PcntChannelConfig { lctrl_mode: PcntControlMode::Keep, hctrl_mode: PcntControlMode::Keep, pos_mode: PcntCountMode::Increment, neg_mode: PcntCountMode::Hold, counter_h_lim: i16::MAX, counter_l_lim: 0, }, )?; println!("Setup filter"); //TODO validate filter value! currently max allowed value counter_unit1.set_filter_value(1023)?; counter_unit1.filter_enable()?; println!("Wifi start"); let sys_loop = EspSystemEventLoop::take()?; let nvs = EspDefaultNvsPartition::take()?; let wifi_driver = EspWifi::new(peripherals.modem, sys_loop, Some(nvs))?; let adc_config = esp_idf_hal::adc::config::Config { resolution: esp_idf_hal::adc::config::Resolution::Resolution12Bit, calibration: true, }; let tank_driver = AdcDriver::new(peripherals.adc1, &adc_config)?; let tank_channel: AdcChannelDriver<'_, { attenuation::DB_11 }, Gpio39> = AdcChannelDriver::new(peripherals.pins.gpio39)?; let mut solar_is_day = PinDriver::input(peripherals.pins.gpio25)?; solar_is_day.set_pull(Pull::Floating)?; let mut boot_button = PinDriver::input(peripherals.pins.gpio0)?; boot_button.set_pull(Pull::Floating)?; let mut light = PinDriver::input_output(peripherals.pins.gpio26)?; light.set_pull(Pull::Floating).unwrap(); let mut main_pump = PinDriver::input_output(peripherals.pins.gpio23)?; main_pump.set_pull(Pull::Floating)?; main_pump.set_low()?; let mut tank_power = PinDriver::input_output(peripherals.pins.gpio27)?; tank_power.set_pull(Pull::Floating)?; let mut general_fault = PinDriver::input_output(peripherals.pins.gpio13)?; general_fault.set_pull(Pull::Floating)?; general_fault.set_low()?; let one_wire_bus = OneWire::new(one_wire_pin) .map_err(|err| -> anyhow::Error { anyhow!("Missing attribute: {:?}", err) })?; println!("After stuff"); let status = print_battery(&mut battery_driver); if status.is_err() { println!("Error communicating with battery!! {:?}", status.err()); } let rv = Mutex::new(PlantCtrlBoard { shift_register, tank_driver, tank_channel, solar_is_day, boot_button, light, main_pump, tank_power, general_fault, one_wire_bus, signal_counter: counter_unit1, wifi_driver, mqtt_client: None, battery_driver, }); Ok(rv) } } fn quantize_to_next_5_percent(value: f64) -> i32 { // Multiply by 100 to work with integer values let multiplied_value = (value * 100.0).round() as i32; // Calculate the remainder when divided by 5 let remainder = multiplied_value % 5; // If the remainder is greater than or equal to half of 5, round up to the next 5% let rounded_value = if remainder >= 2 { multiplied_value + (5 - remainder) } else { multiplied_value - remainder }; // Divide by 100 to get back to a float rounded_value / 100 }