/** \addtogroup Controller * @{ * * @file main.cpp * @author Ollo * @brief PlantControl * @version 0.1 * @date 2020-05-01 * * @copyright Copyright (c) 2020 */ /****************************************************************************** * INCLUDES ******************************************************************************/ #include "LogDefines.h" #include "FileUtils.h" #include "TimeUtils.h" #include "PlantCtrl.h" #include "ControllerConfiguration.h" #include "HomieConfiguration.h" #include "DallasTemperature.h" #include #include "time.h" #include "esp_sleep.h" #include "RunningMedian.h" #include "WakeReason.h" #include #include #include #include "DS2438.h" #include "soc/soc.h" #include "soc/rtc_cntl_reg.h" #include #include #include "driver/pcnt.h" #include "MQTTUtils.h" #include "esp_ota_ops.h" #if defined(TIMED_LIGHT_PIN) #include "ulp-pwm.h" #endif /****************************************************************************** * DEFINES ******************************************************************************/ #define AMOUNT_SENOR_QUERYS 8 #define MAX_TANK_DEPTH 2000 #define REBOOT_LOOP_DETECTION_ERROR 5 /****************************************************************************** * FUNCTION PROTOTYPES ******************************************************************************/ int determineNextPump(bool lowLight); void plantcontrol(); void readPowerSwitchedSensors(); bool determineTimedLightState(bool lowLight); bool otaRunning = false; /****************************************************************************** * NON VOLATILE VARIABLES in DEEP SLEEP ******************************************************************************/ #if defined(TIMED_LIGHT_PIN) RTC_DATA_ATTR bool timedLightLowVoltageTriggered = false; /**remember if it was shut down due to voltage level */ #endif // TIMED_LIGHT_PIN RTC_DATA_ATTR long rtcLastWateringPlant[MAX_PLANTS] = {0}; RTC_DATA_ATTR long consecutiveWateringPlant[MAX_PLANTS] = {0}; /****************************************************************************** * LOCAL VARIABLES ******************************************************************************/ bool volatile mDownloadMode = false; /**< Controller must not sleep */ bool volatile mSensorsRead = false; /**< Sensors are read without Wifi or MQTT */ int volatile pumpToRun = -1; /** pump to run at the end of the cycle */ int volatile selfTestPumpRun = -1; /** pump to run at the end of the cycle */ bool mConfigured = false; long nextBlink = 0; /**< Time needed in main loop to support expected blink code */ RunningMedian waterRawSensor = RunningMedian(5); float mSolarVoltage = 0.0f; /**< Voltage from solar panels */ unsigned long setupFinishedTimestamp; bool pumpStarted = false; long pumpTarget = -1; long pumpStartTime = 0; long lastSendPumpUpdate = 0; #ifdef FLOWMETER_PIN long pumpTargetMl = -1; #endif float waterTemp = 30; /*************************** Hardware abstraction *****************************/ OneWire oneWire(SENSOR_ONEWIRE); DallasTemperature sensors(&oneWire); DS2438 battery(&oneWire, 0.0333333f, AMOUNT_SENOR_QUERYS); VL53L0X tankSensor; #ifndef PLANT0_SENSORTYPE #error "Sensor type must be specified, see HomieTypes.h - Sensor types" #endif #ifndef PLANT1_SENSORTYPE #error "Sensor type must be specified, see HomieTypes.h - Sensor types" #endif #ifndef PLANT2_SENSORTYPE #error "Sensor type must be specified, see HomieTypes.h - Sensor types" #endif #ifndef PLANT3_SENSORTYPE #error "Sensor type must be specified, see HomieTypes.h - Sensor types" #endif #ifndef PLANT4_SENSORTYPE #error "Sensor type must be specified, see HomieTypes.h - Sensor types" #endif #ifndef PLANT5_SENSORTYPE #error "Sensor type must be specified, see HomieTypes.h - Sensor types" #endif #ifndef PLANT6_SENSORTYPE #error "Sensor type must be specified, see HomieTypes.h - Sensor types" #endif Plant mPlants[MAX_PLANTS] = { Plant(SENSOR_PLANT0, OUTPUT_PUMP0, 0, &plant0, &mSetting0, PLANT0_SENSORTYPE), Plant(SENSOR_PLANT1, OUTPUT_PUMP1, 1, &plant1, &mSetting1, PLANT1_SENSORTYPE), Plant(SENSOR_PLANT2, OUTPUT_PUMP2, 2, &plant2, &mSetting2, PLANT2_SENSORTYPE), Plant(SENSOR_PLANT3, OUTPUT_PUMP3, 3, &plant3, &mSetting3, PLANT3_SENSORTYPE), Plant(SENSOR_PLANT4, OUTPUT_PUMP4, 4, &plant4, &mSetting4, PLANT4_SENSORTYPE), Plant(SENSOR_PLANT5, OUTPUT_PUMP5, 5, &plant5, &mSetting5, PLANT5_SENSORTYPE), Plant(SENSOR_PLANT6, OUTPUT_PUMP6, 6, &plant6, &mSetting6, PLANT6_SENSORTYPE)}; /****************************************************************************** * LOCAL FUNCTIONS ******************************************************************************/ void finsihedCycleSucessfully() { const esp_partition_t *running = esp_ota_get_running_partition(); esp_ota_img_states_t ota_state; if (esp_ota_get_state_partition(running, &ota_state) == ESP_OK) { log(LOG_LEVEL_INFO, "Get State Partition was Successfull", LOG_BOOT_ERROR_DETECTION); if (ota_state == ESP_OTA_IMG_PENDING_VERIFY) { log(LOG_LEVEL_INFO, "Diagnostics completed successfully! Marking as valid", LOG_BOOT_ERROR_DETECTION); esp_ota_mark_app_valid_cancel_rollback(); } } } void espDeepSleep(bool afterPump = false) { if (mDownloadMode) { log(LOG_LEVEL_DEBUG, "abort deepsleep, DownloadMode active", LOG_DEBUG_CODE); // if we manage to get to the download mode, the device can be restored finsihedCycleSucessfully(); return; } if (aliveWasRead()) { for (int i = 0; i < 10; i++) { long cTime = getCurrentTime(); if (cTime < 100000) { delay(100); } else { break; } } if (getCurrentTime() < 100000) { log(LOG_LEVEL_DEBUG, "NTP timeout before deepsleep", LOG_DEBUG_CODE); } } esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_PERIPH, ESP_PD_OPTION_ON); long secondsToSleep = -1; if (afterPump) { log(LOG_LEVEL_INFO, "AfterPump Cycle Resume", LOG_SLEEP_CYCLE); secondsToSleep = 1; } else { if (mSolarVoltage < SOLAR_CHARGE_MIN_VOLTAGE) { log(LOG_LEVEL_INFO, String(String(mSolarVoltage) + "V! Low light -> deepSleepNight"), LOG_SLEEP_NIGHT); secondsToSleep = deepSleepNightTime.get(); } else { log(LOG_LEVEL_INFO, "Sunny -> deepSleep", LOG_SLEEP_DAY); secondsToSleep = deepSleepTime.get(); } } finsihedCycleSucessfully(); esp_sleep_enable_timer_wakeup((secondsToSleep * 1000U * 1000U)); if (aliveWasRead()) { delay(1000); Homie.prepareToSleep(); } else { esp_deep_sleep_start(); } } // requires homie being started void readOneWireSensors() { for (uint8_t i = 0; i < sensors.getDeviceCount(); i++) { uint8_t ds18b20Address[8]; bool valid = false; float temp = -127; for (int retry = 0; retry < AMOUNT_SENOR_QUERYS && !valid; retry++) { bool validAddress = sensors.getAddress(ds18b20Address, i); if (validAddress && sensors.validFamily(ds18b20Address)) { temp = sensors.getTempC(ds18b20Address); if (temp != -127) { valid = true; } else { delay(10); } } } if (!valid) { // wrong family or crc errors on each retry continue; } char buf[(sizeof(ds18b20Address) * 2) + 1]; /* additional byte for trailing terminator */ snprintf(buf, sizeof(buf), "%.2X%.2X%.2X%.2X%.2X%.2X%.2X%.2X", ds18b20Address[0], ds18b20Address[1], ds18b20Address[2], ds18b20Address[3], ds18b20Address[4], ds18b20Address[5], ds18b20Address[6], ds18b20Address[7]); if (valid) { Serial << "DS18S20 Temperatur " << String(buf) << " : " << temp << " °C " << endl; if (strcmp(lipoSensorAddr.get(), buf) == 0) { mqttWrite(&sensorTemp, TEMPERATUR_SENSOR_LIPO, String(temp)); Serial << "Lipo Temperatur " << temp << " °C " << endl; } if (strcmp(waterSensorAddr.get(), buf) == 0) { mqttWrite(&sensorTemp, TEMPERATUR_SENSOR_WATER, String(temp)); Serial << "Water Temperatur " << temp << " °C " << endl; waterTemp = temp; } /* Always send the sensor address with the temperatur value */ mqttWrite(&sensorTemp, String(buf), String(temp)); } else { Serial << "DS18S20 sensor " << String(buf) << " could not be read " << temp << endl; } } battery.updateMultiple(); mSolarVoltage = battery.getVoltage(BATTSENSOR_INDEX_SOLAR) * SOLAR_VOLT_FACTOR; Serial.flush(); } /** * @brief Sensors, that are connected to GPIOs, mandatory for WIFI. * These sensors (ADC2) can only be read when no Wifi is used. */ void readPowerSwitchedSensors() { for (int i = 0; i < MAX_PLANTS; i++) { Serial << "Sensor " << i << " mode: " << mPlants[i].getSensorModeString() << endl; } digitalWrite(OUTPUT_ENABLE_SENSOR, HIGH); delay(50); for (int i = 0; i < MAX_PLANTS; i++) { mPlants[i].startMoistureMeasurement(); } delay(MOISTURE_MEASUREMENT_DURATION); for (int i = 0; i < MAX_PLANTS; i++) { mPlants[i].stopMoistureMeasurement(); } for (int i = 0; i < MAX_PLANTS; i++) { mPlants[i].blockingMoistureMeasurement(); } for (int i = 0; i < MAX_PLANTS; i++) { Plant plant = mPlants[i]; switch (plant.getSensorMode()) { case FREQUENCY_MOD_RESISTANCE_PROBE: { Serial << "Plant " << i << " measurement: " << mPlants[i].getCurrentMoistureRaw() << " hz " << mPlants[i].getCurrentMoisturePCT() << "%" << endl; break; } case ANALOG_RESISTANCE_PROBE : { Serial << "Plant " << i << " measurement: " << mPlants[i].getCurrentMoistureRaw() << " mV " << mPlants[i].getCurrentMoisturePCT() << "%" << endl; break; } case NONE : { } } } waterRawSensor.clear(); tankSensor.setTimeout(500); long start = millis(); bool distanceReady = false; while (start + 500 > millis()) { if (tankSensor.init()) { distanceReady = true; break; } else { delay(20); } } if (distanceReady) { tankSensor.setSignalRateLimit(0.1); // increase laser pulse periods (defaults are 14 and 10 PCLKs) tankSensor.setVcselPulsePeriod(VL53L0X::VcselPeriodPreRange, 18); tankSensor.setVcselPulsePeriod(VL53L0X::VcselPeriodFinalRange, 14); tankSensor.setMeasurementTimingBudget(200000); for (int readCnt = 0; readCnt < 5; readCnt++) { if (!tankSensor.timeoutOccurred()) { uint16_t distance = tankSensor.readRangeSingleMillimeters(); if (distance < MAX_TANK_DEPTH) { waterRawSensor.add(distance); } } delay(10); } Serial << "Distance sensor " << waterRawSensor.getMedian() << " mm" << endl; } else { log(LOG_LEVEL_WARN, LOG_TANKSENSOR_FAIL_DETECT, LOG_TANKSENSOR_FAIL_DETECT_CODE); } /* deactivate the sensors */ digitalWrite(OUTPUT_ENABLE_SENSOR, LOW); } void onHomieEvent(const HomieEvent &event) { switch (event.type) { case HomieEventType::READY_TO_SLEEP: esp_deep_sleep_start(); break; case HomieEventType::SENDING_STATISTICS: break; case HomieEventType::MQTT_READY: if (mSensorsRead) { Serial.printf("Timeout occured... too late!\r\n"); return; } mSensorsRead = true; // MQTT is working, deactivate timeout logic configTime(UTC_OFFSET_DE, UTF_OFFSET_DE_DST, ntpServer.get()); startMQTTRoundtripTest(); break; case HomieEventType::OTA_STARTED: for (int i = 0; i < MAX_PLANTS; i++) { mPlants[i].deactivatePump(); } otaRunning = true; mDownloadMode = true; break; case HomieEventType::OTA_SUCCESSFUL: digitalWrite(OUTPUT_ENABLE_SENSOR, LOW); digitalWrite(OUTPUT_ENABLE_PUMP, LOW); ESP.restart(); break; default: break; } } int determineNextPump(bool isLowLight) { int pumpToUse = -1; for (int i = 0; i < MAX_PLANTS; i++) { bool wateralarm = consecutiveWateringPlant[i] >= pumpIneffectiveWarning.get(); if (wateralarm) { log(LOG_LEVEL_ERROR, String(String(i) + " Plant still dry after " + String(consecutiveWateringPlant[i]) + " watering attempts"), LOG_PUMP_INEFFECTIVE); } Plant plant = mPlants[i]; if (!plant.isPumpTriggerActive()) { plant.publishState("deactivated"); log(LOG_LEVEL_DEBUG, String(String(i) + " Skip deactivated pump"), LOG_DEBUG_CODE); continue; } if ((rtcLastWateringPlant[i] + plant.getCooldownInSeconds()) > getCurrentTime()) { if (wateralarm) { plant.publishState("cooldown+alarm"); } else { plant.publishState("cooldown"); } log(LOG_LEVEL_DEBUG, String(String(i) + " Skipping due to cooldown " + String(rtcLastWateringPlant[i] + plant.getCooldownInSeconds())), LOG_DEBUG_CODE); continue; } if (!isLowLight && plant.isAllowedOnlyAtLowLight()) { if (wateralarm) { plant.publishState("sunny+alarm"); } else { plant.publishState("sunny"); } log(LOG_LEVEL_DEBUG, String(String(i) + " No pump required: due to light"), LOG_DEBUG_CODE); continue; } if (! (plant.isHydroponic() || plant.isTimerOnly())) { if (equalish(plant.getCurrentMoistureRaw(), MISSING_SENSOR)) { plant.publishState("nosensor"); log(LOG_LEVEL_ERROR, String(String(i) + " No pump possible: missing sensor"), LOG_MISSING_PUMP); continue; } } if (plant.isPumpRequired()) { /* Handle e.g. start = 21, end = 8 */ if (plant.isHydroponic() || (((plant.getHoursStart() > plant.getHoursEnd()) && (getCurrentHour() >= plant.getHoursStart() || getCurrentHour() <= plant.getHoursEnd())) || /* Handle e.g. start = 8, end = 21 */ ((plant.getHoursStart() < plant.getHoursEnd()) && (getCurrentHour() >= plant.getHoursStart() && getCurrentHour() <= plant.getHoursEnd())) || /* no time from NTP received */ (getCurrentTime() < 10000))) { if (wateralarm) { plant.publishState("active+alarm"); } else { if(mDownloadMode){ plant.publishState("active+supressed"); }else { plant.publishState("active"); } } if (! (plant.isHydroponic() || plant.isTimerOnly())) { consecutiveWateringPlant[i]++; } log(LOG_LEVEL_DEBUG, String(String(i) + " Requested pumping"), LOG_DEBUG_CODE); pumpToUse = i; return pumpToUse; } else { if (wateralarm) { plant.publishState("after-work+alarm"); } else { plant.publishState("after-work"); } log(LOG_LEVEL_DEBUG, String(String(i) + " ignored due to time boundary: " + String(plant.getHoursStart()) + " to " + String(plant.getHoursEnd()) + " ( current " + String(getCurrentHour()) + " )"), LOG_DEBUG_CODE); } continue; } else { plant.publishState("wet"); // plant was detected as wet, remove consecutive count consecutiveWateringPlant[i] = 0; } } return -1; } /** * @brief Handle Mqtt commands to keep controller alive * * @param range multiple transmitted values (not used for this function) * @param value single value * @return true when the command was parsed and executed succuessfully * @return false on errors when parsing the request */ bool aliveHandler(const HomieRange &range, const String &value) { if (range.isRange) { return false; // only one controller is present } if (value.equals("ON") || value.equals("On") || value.equals("1")) { mDownloadMode = true; } else { if (mDownloadMode) { esp_restart(); } mDownloadMode = false; } return true; } bool notStarted = true; void homieLoop() { if (aliveWasRead() && notStarted) { Serial.println("received alive & mqtt is ready"); notStarted = false; plantcontrol(); } } bool switch1(const HomieRange &range, const String &value) { return mPlants[0].switchHandler(range, value); } bool switch2(const HomieRange &range, const String &value) { return mPlants[1].switchHandler(range, value); } bool switch3(const HomieRange &range, const String &value) { return mPlants[2].switchHandler(range, value); } bool switch4(const HomieRange &range, const String &value) { return mPlants[3].switchHandler(range, value); } bool switch5(const HomieRange &range, const String &value) { return mPlants[4].switchHandler(range, value); } bool switch6(const HomieRange &range, const String &value) { return mPlants[5].switchHandler(range, value); } bool switch7(const HomieRange &range, const String &value) { return mPlants[6].switchHandler(range, value); } void initPumpLogic() { // set targets #ifdef FLOWMETER_PIN pumpTargetMl = mPlants[pumpToRun].getPumpMl(); // 0-6 are used for moisture measurment pcnt_unit_t unit = (pcnt_unit_t)(PCNT_UNIT_7); pcnt_config_t pcnt_config = {}; // Instancia PCNT config pcnt_config.pulse_gpio_num = FLOWMETER_PIN; // Configura GPIO para entrada dos pulsos pcnt_config.ctrl_gpio_num = PCNT_PIN_NOT_USED; // Configura GPIO para controle da contagem pcnt_config.unit = unit; // Unidade de contagem PCNT - 0 pcnt_config.channel = PCNT_CHANNEL_0; // Canal de contagem PCNT - 0 pcnt_config.counter_h_lim = INT16_MAX; // Limite maximo de contagem - 20000 pcnt_config.pos_mode = PCNT_COUNT_INC; // Incrementa contagem na subida do pulso pcnt_config.neg_mode = PCNT_COUNT_DIS; // Incrementa contagem na descida do pulso pcnt_config.lctrl_mode = PCNT_MODE_KEEP; // PCNT - modo lctrl desabilitado pcnt_config.hctrl_mode = PCNT_MODE_KEEP; // PCNT - modo hctrl - se HIGH conta incrementando pcnt_unit_config(&pcnt_config); // Configura o contador PCNT pcnt_counter_clear(unit); // Zera o contador PCNT pcnt_counter_resume(unit); #endif pumpStartTime = millis(); pumpTarget = millis() + (mPlants[pumpToRun].getPumpDuration() * 1000); #ifdef FLOWMETER_PIN log(LOG_LEVEL_INFO, "Starting pump " + String(pumpToRun) + " for " + String(mPlants[pumpToRun].getPumpDuration()) + "s or " + String(pumpTargetMl) + "ml", LOG_PUMP_STARTED_CODE); #else log(LOG_LEVEL_INFO, "Starting pump " + String(pumpToRun) + " for " + String(mPlants[pumpToRun].getPumpDuration()) + "s", LOG_PUMP_STARTED_CODE); #endif // enable power WRITE_PERI_REG(RTC_CNTL_BROWN_OUT_REG, 0); digitalWrite(OUTPUT_ENABLE_PUMP, HIGH); delay(100); WRITE_PERI_REG(RTC_CNTL_BROWN_OUT_REG, 1); mPlants[pumpToRun].activatePump(); } void pumpActiveLoop() { bool targetReached = false; if (!pumpStarted) { initPumpLogic(); pumpStarted = true; rtcLastWateringPlant[pumpToRun] = getCurrentTime(); } bool mqttUpdateTick = false; if (lastSendPumpUpdate + 1000 < millis()) { lastSendPumpUpdate = millis(); mqttUpdateTick = true; } long duration = millis() - pumpStartTime; #ifdef FLOWMETER_PIN int16_t pulses; pcnt_unit_t unit = (pcnt_unit_t)(PCNT_UNIT_7); esp_err_t result = pcnt_get_counter_value(unit, &pulses); if (result != ESP_OK) { log(LOG_LEVEL_ERROR, LOG_HARDWARECOUNTER_ERROR_MESSAGE, LOG_HARDWARECOUNTER_ERROR_CODE); targetReached = true; log(LOG_LEVEL_INFO, "Reached pump target ml " + String(pumpToRun), LOG_PUMP_STARTED_CODE); } else { float mLPumped = pulses / FLOWMETER_PULSES_PER_ML; // mLperMs*duration; if (mLPumped >= pumpTargetMl) { targetReached = true; pcnt_counter_pause(unit); mPlants[pumpToRun].setProperty("pulses").send(String(pulses)); mPlants[pumpToRun].setProperty("waterusage").send(String(mLPumped)); } else if (mqttUpdateTick) { mPlants[pumpToRun].setProperty("pulses").send(String(pulses)); mPlants[pumpToRun].setProperty("waterusage").send(String(mLPumped)); } } #endif if (millis() > pumpTarget) { mPlants[pumpToRun].setProperty("watertime").send(String(duration)); targetReached = true; } else if (mqttUpdateTick) { mPlants[pumpToRun].setProperty("watertime").send(String(duration)); } if (targetReached) { // disable all digitalWrite(OUTPUT_ENABLE_PUMP, LOW); mPlants[pumpToRun].deactivatePump(); // disable loop, to prevent multi processing pumpStarted = false; // if runtime is larger than cooldown, else it would run continously rtcLastWateringPlant[pumpToRun] = getCurrentTime(); espDeepSleep(true); } } void safeSetup() { /* reduce power consumption */ setCpuFrequencyMhz(80); Serial.begin(115200); Serial << "Wifi mode set to " << WIFI_OFF << " to allow analog2 useage " << endl; WiFi.mode(WIFI_OFF); Serial.flush(); // restore state before releasing pin, to prevent flickering #if defined(TIMED_LIGHT_PIN) ulp_pwm_init(); #endif // TIMED_LIGHT_PIN /* Intialize Plant */ for (int i = 0; i < MAX_PLANTS; i++) { mPlants[i].init(); } // read button pinMode(BUTTON, INPUT); // Power pins pinMode(OUTPUT_ENABLE_PUMP, OUTPUT); digitalWrite(OUTPUT_ENABLE_PUMP, LOW); pinMode(OUTPUT_ENABLE_SENSOR, OUTPUT); static_assert(HomieInternals::MAX_CONFIG_SETTING_SIZE >= MAX_CONFIG_SETTING_ITEMS, "Limits.hpp not adjusted MAX_CONFIG_SETTING_ITEMS"); if (HomieInternals::MAX_CONFIG_SETTING_SIZE < MAX_CONFIG_SETTING_ITEMS) { // increase the config settings Serial << "Limits.hpp is not adjusted, please search for this string and increase" << endl; return; } static_assert(HomieInternals::MAX_JSON_CONFIG_FILE_SIZE >= MAX_JSON_CONFIG_FILE_SIZE_CUSTOM, "Limits.hpp not adjusted MAX_JSON_CONFIG_FILE_SIZE"); if (HomieInternals::MAX_JSON_CONFIG_FILE_SIZE < MAX_JSON_CONFIG_FILE_SIZE_CUSTOM) { // increase the config settings Serial << "Limits.hpp is not adjusted, please search for this string and increase" << endl; return; } /************************* Start Homie Framework ***************/ Homie_setFirmware("PlantControl", FIRMWARE_VERSION); Homie.disableLedFeedback(); Homie_setBrand("PlantControl"); // Set default values // in seconds deepSleepTime.setDefaultValue(600).setValidator([](long candidate) { return (candidate > 0) && (candidate < (60 * 60 * 2) /** 2h max sleep */); }); deepSleepNightTime.setDefaultValue(600); ntpServer.setDefaultValue("pool.ntp.org"); /* waterLevelMax 1000 */ /* 100cm in mm */ waterLevelMin.setDefaultValue(50); /* 5cm in mm */ waterLevelWarn.setDefaultValue(500); /* 50cm in mm */ waterLevelVol.setDefaultValue(5000); /* 5l in ml */ lipoSensorAddr.setDefaultValue(""); waterSensorAddr.setDefaultValue(""); pumpIneffectiveWarning.setDefaultValue(5).setValidator([](long candidate) { return (candidate > 0) && (candidate < (20)); }); #if defined(TIMED_LIGHT_PIN) timedLightPowerLevel.setDefaultValue(25).setValidator([](long candidate) { return (candidate > 0) && (candidate <= (255)); }); timedLightStart.setDefaultValue(18).setValidator([](long candidate) { return (candidate > 0) && (candidate < (25)); }); timedLightEnd.setDefaultValue(23).setValidator([](long candidate) { return (candidate > 0) && (candidate < (24)); }); timedLightOnlyWhenDark.setDefaultValue(true); timedLightVoltageCutoff.setDefaultValue(3.8).setValidator([](double candidate) { return ((candidate > 3.3 || candidate == -1) && (candidate < (50))); }); #endif // TIMED_LIGHT_PIN Homie.setLoopFunction(homieLoop); Homie.onEvent(onHomieEvent); /* Intialize Plant */ for (int i = 0; i < MAX_PLANTS; i++) { mPlants[i].initSensors(); } readPowerSwitchedSensors(); Homie.setup(); Wire = TwoWire(0); Wire.setPins(SENSOR_TANK_SDA, SENSOR_TANK_SCL); Wire.begin(); /************************* Start One-Wire bus ***************/ int tempInitStartTime = millis(); uint8_t sensorCount = 0U; /* Required to read the temperature at least once */ while ((sensorCount == 0 || !battery.isFound()) && millis() < tempInitStartTime + TEMPERATUR_TIMEOUT) { sensors.begin(); battery.begin(); sensorCount = sensors.getDS18Count(); delay(50); } Serial << "DS18S20 count: " << sensorCount << " found in " << (millis() - tempInitStartTime) << " ms" << endl; Serial.flush(); /* Measure temperature TODO idea: move this into setup */ if (sensorCount > 0) { // sensors.setResolution(DS18B20_RESOLUTION); sensors.requestTemperatures(); } mConfigured = Homie.isConfigured(); if (mConfigured) { for (int i = 0; i < MAX_PLANTS; i++) { mPlants[i].advertise(); } mPlants[0].setSwitchHandler(switch1); mPlants[1].setSwitchHandler(switch2); mPlants[2].setSwitchHandler(switch3); mPlants[3].setSwitchHandler(switch4); mPlants[4].setSwitchHandler(switch5); mPlants[5].setSwitchHandler(switch6); mPlants[6].setSwitchHandler(switch7); sensorTemp.advertise(TEMPERATUR_SENSOR_LIPO) .setName(TEMPERATURE_NAME) .setDatatype(NUMBER_TYPE) .setUnit(TEMPERATURE_UNIT); sensorTemp.advertise(TEMPERATUR_SENSOR_WATER) .setName(TEMPERATURE_NAME) .setDatatype(NUMBER_TYPE) .setUnit(TEMPERATURE_UNIT); sensorTemp.advertise(TEMPERATUR_SENSOR_CHIP) .setName(TEMPERATURE_NAME) .setDatatype(NUMBER_TYPE) .setUnit(TEMPERATURE_UNIT); sensorLipo.advertise("percent") .setName("Percent") .setDatatype(NUMBER_TYPE) .setUnit("%"); sensorLipo.advertise("volt") .setName("Volt") .setDatatype(NUMBER_TYPE) .setUnit("V"); sensorSolar.advertise("percent") .setName("Percent") .setDatatype(NUMBER_TYPE) .setUnit("%"); sensorSolar.advertise("volt") .setName("Volt") .setDatatype(NUMBER_TYPE) .setUnit("V"); sensorWater.advertise("remaining").setDatatype(NUMBER_TYPE).setUnit("%"); } else { if (doesFileExist(CONFIG_FILE)) { printFile(CONFIG_FILE); } if (doesFileExist(CONFIG_FILE_BACKUP)) { printFile(CONFIG_FILE_BACKUP); bool restoredConfig = copyFile(CONFIG_FILE_BACKUP, CONFIG_FILE); if (restoredConfig) { deleteFile(CONFIG_FILE_BACKUP); espDeepSleep(); return; } } readOneWireSensors(); // prevent BOD to be paranoid WRITE_PERI_REG(RTC_CNTL_BROWN_OUT_REG, 0); digitalWrite(OUTPUT_ENABLE_PUMP, HIGH); delay(100); WRITE_PERI_REG(RTC_CNTL_BROWN_OUT_REG, 1); Serial.println("Initial Setup. Start Accesspoint..."); mDownloadMode = true; } stayAlive.advertise("alive").setName("Alive").setDatatype(NUMBER_TYPE).settable(aliveHandler); setupFinishedTimestamp = millis(); } /** * @brief Startup function * Is called once, the controller is started */ void setup() { try { safeSetup(); } catch (const std::exception &e) { Serial.printf("Exception thrown: \"%s\"", e.what()); } catch (...) { Serial.println("Other exception thrown."); } } void selfTest() { if (selfTestPumpRun >= 0 && selfTestPumpRun < MAX_PLANTS) { Serial << "self test mode pump deactivate " << pumpToRun << endl; Serial.flush(); mPlants[selfTestPumpRun].deactivatePump(); } if (selfTestPumpRun >= MAX_PLANTS) { Serial << "self test finished all pumps, proceed to initial wait mode " << selfTestPumpRun << endl; Serial.flush(); digitalWrite(OUTPUT_ENABLE_PUMP, LOW); nextBlink = millis() + 500; } else { selfTestPumpRun++; nextBlink = millis() + 5000; } if (selfTestPumpRun < MAX_PLANTS) { Serial << "self test activating pump " << selfTestPumpRun << endl; Serial.flush(); mPlants[selfTestPumpRun].activatePump(); } } /** * @brief Cyclic call * Executs the Homie base functionallity or triggers sleeping, if requested. */ void loop() { Homie.loop(); /* Toggel Senor LED to visualize mode 3 */ if (mDownloadMode) { if (nextBlink < millis()) { digitalWrite(OUTPUT_ENABLE_SENSOR, !digitalRead(OUTPUT_ENABLE_SENSOR)); if (mConfigured) { if (otaRunning) { nextBlink = millis() + 100; } else { nextBlink = millis() + 501; } } else { selfTest(); } } } else { unsigned long timeSinceSetup = millis() - setupFinishedTimestamp; if ((timeSinceSetup > MQTT_TIMEOUT) && (!mSensorsRead)) { mSensorsRead = true; /* Disable Wifi and put modem into sleep mode */ WiFi.mode(WIFI_OFF); Serial << "Wifi mode set to " << WIFI_OFF << " mqqt was no reached within " << timeSinceSetup << "ms , fallback to offline mode " << endl; Serial.flush(); plantcontrol(); } } /** Timeout always stopping the ESP -> no endless power consumption */ if (millis() > ESP_STALE_TIMEOUT && !mDownloadMode) { Serial << (millis() / 1000) << "not terminated watchdog reset" << endl; Serial.flush(); esp_restart(); } if (pumpToRun != -1) { pumpActiveLoop(); } } /*** * @fn plantcontrol * Main function, doing the logic */ void plantcontrol() { if (aliveWasRead()) { for (int i = 0; i < MAX_PLANTS; i++) { mPlants[i].postMQTTconnection(); mPlants[i].setProperty("consecutivePumps").send(String(consecutiveWateringPlant[i])); } } readOneWireSensors(); Serial << "W : " << waterRawSensor.getAverage() << " cm (" << String(waterLevelMax.get() - waterRawSensor.getAverage()) << "%)" << endl; float batteryVoltage = battery.getVoltage(BATTSENSOR_INDEX_BATTERY); float chipTemp = battery.getTemperature(); Serial << "Chip Temperatur " << chipTemp << " °C " << endl; if (aliveWasRead()) { float remaining = waterLevelMax.get() - waterRawSensor.getAverage(); if (!isnan(remaining)) { sensorWater.setProperty("remaining").send(String(remaining)); } if (!isnan(waterRawSensor.getAverage())) { sensorWater.setProperty("distance").send(String(waterRawSensor.getAverage())); } sensorLipo.setProperty("percent").send(String(100 * batteryVoltage / VOLT_MAX_BATT)); sensorLipo.setProperty("volt").send(String(batteryVoltage)); sensorLipo.setProperty("current").send(String(battery.getCurrent())); sensorLipo.setProperty("Ah").send(String(battery.getAh())); sensorLipo.setProperty("ICA").send(String(battery.getICA())); sensorLipo.setProperty("DCA").send(String(battery.getDCA())); sensorLipo.setProperty("CCA").send(String(battery.getCCA())); sensorSolar.setProperty("volt").send(String(mSolarVoltage)); sensorTemp.setProperty(TEMPERATUR_SENSOR_CHIP).send(String(chipTemp)); } else { Serial.println("Skipping MQTT, offline mode"); Serial.flush(); } #if defined(TIMED_LIGHT_PIN) bool isLowLight = mSolarVoltage <= 9; bool shouldLight = determineTimedLightState(isLowLight); if(shouldLight){ ulp_pwm_set_level(timedLightPowerLevel.get()); }else { ulp_pwm_set_level(0); } #endif // TIMED_LIGHT_PIN bool isLiquid = waterTemp > 5; bool hasWater = true; // FIXME remaining > waterLevelMin.get(); // FIXME no water warning message pumpToRun = determineNextPump(isLowLight); // early aborts if (pumpToRun != -1) { if(isLiquid){ if (hasWater) { if (mDownloadMode) { log(LOG_LEVEL_INFO, LOG_PUMP_AND_DOWNLOADMODE, LOG_PUMP_AND_DOWNLOADMODE_CODE); pumpToRun = -1; } } else { log(LOG_LEVEL_ERROR, LOG_PUMP_BUTNOTANK_MESSAGE, LOG_PUMP_BUTNOTANK_CODE); pumpToRun = -1; } } else{ log(LOG_LEVEL_ERROR, LOG_VERY_COLD_WATER, LOG_VERY_COLD_WATER_CODE); pumpToRun = -1; } } // go directly to sleep, skipping the pump loop if (pumpToRun == -1) { espDeepSleep(); } } /** @}*/ #ifdef TIMED_LIGHT_PIN bool determineTimedLightState(bool lowLight) { bool onlyAllowedWhenDark = timedLightOnlyWhenDark.get(); long hoursStart = timedLightStart.get(); long hoursEnd = timedLightEnd.get(); // ntp missing if (getCurrentTime() < 10000) { timedLightNode.setProperty("state").send(String("Off, missing ntp")); return false; } if (onlyAllowedWhenDark && !lowLight) { timedLightNode.setProperty("state").send(String("Off, not dark")); timedLightLowVoltageTriggered = false; return false; } int curHour = getCurrentHour(); bool condition1 = ((hoursStart > hoursEnd) && (curHour >= hoursStart || curHour <= hoursEnd)); bool condition2 = /* Handle e.g. start = 8, end = 21 */ ((hoursStart < hoursEnd) && (curHour >= hoursStart && curHour <= hoursEnd)); timedLightNode.setProperty("debug").send(String(curHour) + " " + String(hoursStart) + " " + String(hoursEnd) + " " + String(condition1) + " " + String(condition2)); if (condition1 || condition2) { bool voltageOk = !timedLightLowVoltageTriggered && battery.getVoltage(BATTSENSOR_INDEX_BATTERY) >= timedLightVoltageCutoff.get(); if (voltageOk || equalish(timedLightVoltageCutoff.get(), -1)) { timedLightNode.setProperty("state").send(String("On")); return true; } else { timedLightNode.setProperty("state").send(String("Off, due to missing voltage")); timedLightLowVoltageTriggered = true; return false; } } else { timedLightNode.setProperty("state").send(String("Off, outside worktime")); return false; } } #endif