#include //#include #ifdef ARDUINO_AVR_UNO #include #else #include #endif #include "sha1.h" #define SHA1_K0 0x5a827999 #define SHA1_K20 0x6ed9eba1 #define SHA1_K40 0x8f1bbcdc #define SHA1_K60 0xca62c1d6 const uint8_t sha1InitState[] PROGMEM = { 0x01,0x23,0x45,0x67, // H0 0x89,0xab,0xcd,0xef, // H1 0xfe,0xdc,0xba,0x98, // H2 0x76,0x54,0x32,0x10, // H3 0xf0,0xe1,0xd2,0xc3 // H4 }; void Sha1Class::init(void) { memcpy_P(state.b,sha1InitState,HASH_LENGTH); byteCount = 0; bufferOffset = 0; } uint32_t Sha1Class::rol32(uint32_t number, uint8_t bits) { return ((number << bits) | (number >> (32-bits))); } void Sha1Class::hashBlock() { uint8_t i; uint32_t a,b,c,d,e,t; a=state.w[0]; b=state.w[1]; c=state.w[2]; d=state.w[3]; e=state.w[4]; for (i=0; i<80; i++) { if (i>=16) { t = buffer.w[(i+13)&15] ^ buffer.w[(i+8)&15] ^ buffer.w[(i+2)&15] ^ buffer.w[i&15]; buffer.w[i&15] = rol32(t,1); } if (i<20) { t = (d ^ (b & (c ^ d))) + SHA1_K0; } else if (i<40) { t = (b ^ c ^ d) + SHA1_K20; } else if (i<60) { t = ((b & c) | (d & (b | c))) + SHA1_K40; } else { t = (b ^ c ^ d) + SHA1_K60; } t+=rol32(a,5) + e + buffer.w[i&15]; e=d; d=c; c=rol32(b,30); b=a; a=t; } state.w[0] += a; state.w[1] += b; state.w[2] += c; state.w[3] += d; state.w[4] += e; } void Sha1Class::addUncounted(uint8_t data) { buffer.b[bufferOffset ^ 3] = data; bufferOffset++; if (bufferOffset == BLOCK_LENGTH) { hashBlock(); bufferOffset = 0; } } #if defined(ARDUINO) && ARDUINO >= 100 size_t #else void #endif Sha1Class::write(uint8_t data) { ++byteCount; addUncounted(data); #if defined(ARDUINO) && ARDUINO >= 100 return 1; #endif } void Sha1Class::pad() { // Implement SHA-1 padding (fips180-2 ยง5.1.1) // Pad with 0x80 followed by 0x00 until the end of the block addUncounted(0x80); while (bufferOffset != 56) addUncounted(0x00); // Append length in the last 8 bytes addUncounted(0); // We're only using 32 bit lengths addUncounted(0); // But SHA-1 supports 64 bit lengths addUncounted(0); // So zero pad the top bits addUncounted(byteCount >> 29); // Shifting to multiply by 8 addUncounted(byteCount >> 21); // as SHA-1 supports bitstreams as well as addUncounted(byteCount >> 13); // byte. addUncounted(byteCount >> 5); addUncounted(byteCount << 3); } uint8_t* Sha1Class::result(void) { // Pad to complete the last block pad(); // Swap byte order back for (int i=0; i<5; i++) { uint32_t a,b; a=state.w[i]; b=a<<24; b|=(a<<8) & 0x00ff0000; b|=(a>>8) & 0x0000ff00; b|=a>>24; state.w[i]=b; } // Return pointer to hash (20 characters) return state.b; } #define HMAC_IPAD 0x36 #define HMAC_OPAD 0x5c void Sha1Class::initHmac(const uint8_t* key, int keyLength) { uint8_t i; memset(keyBuffer,0,BLOCK_LENGTH); if (keyLength > BLOCK_LENGTH) { // Hash long keys init(); for (;keyLength--;) write(*key++); memcpy(keyBuffer,result(),HASH_LENGTH); } else { // Block length keys are used as is memcpy(keyBuffer,key,keyLength); } // Start inner hash init(); for (i=0; i