4 Commits

13 changed files with 513 additions and 661 deletions

View File

@@ -1,21 +1,19 @@
# DD3-LoRa-Bridge-MultiSender
Firmware for LilyGO T3 v1.6.1 (`ESP32 + SX1276 + SSD1306`) that runs as either:
- `Sender` (PIN `GPIO14` HIGH): reads one IEC 62056-21 meter, batches samples, sends over LoRa.
- `Sender` (PIN `GPIO14` HIGH): reads multiple IEC 62056-21 meters, batches data, sends over LoRa.
- `Receiver` (PIN `GPIO14` LOW): receives/ACKs batches, publishes MQTT, serves web UI, logs to SD.
## Current Architecture
- Single codebase, role selected at boot via `detect_role()` (`include/config.h`, `src/config.cpp`).
- LoRa link uses explicit CRC16 frame protection in firmware (`src/lora_transport.cpp`).
- Sender batches up to `30` samples and retries on missing ACK (`BATCH_MAX_RETRIES=2`, retry policy `Keep`).
- Sender meter parsing is decoupled from LoRa ACK waits using a dedicated FreeRTOS reader task + queue (`src/main.cpp`).
- Receiver uses STA mode when config is valid, otherwise AP fallback with web config.
- No debug auto-reboot timer is active in normal firmware loops.
- LoRa link uses explicit CRC16 frame protection in firmware (`src/lora_transport.cpp`), in addition to LoRa PHY CRC.
- Sender batches up to `30` samples and retransmits on missing ACK (`BATCH_MAX_RETRIES=2`, policy `Keep`).
- Receiver handles AP fallback when STA config is missing/invalid and exposes a config/status web UI.
## LoRa Frame Protocol (Current)
On-air frame format:
Frame format on-air:
`[msg_kind:1][device_short_id:2][payload...][crc16:2]`
@@ -25,56 +23,53 @@ On-air frame format:
### `BatchUp`
Transport is chunked (`batch_id`, `chunk_index`, `chunk_count`, `total_len`) and reassembled before payload decode.
`BatchUp` is chunked in transport (`batch_id`, `chunk_index`, `chunk_count`, `total_len`) and then decoded via `payload_codec`.
Payload codec (`src/payload_codec.cpp`) currently uses:
- `kMagic=0xDDB3`
- `kSchema=2`
- metadata: sender, batch, timestamp, interval, battery, fault counters
- data arrays: `energy_wh[]`, `p1_w[]`, `p2_w[]`, `p3_w[]`
Payload header contains:
- fixed magic/schema fields (`kMagic=0xDDB3`, `kSchema=2`)
- `schema_id`
- sender/batch/time/error metadata
`n == 0` is valid and used for sync request packets.
Supported payload schemas in this branch:
- `schema_id=1` (`EnergyMulti`): integer kWh for up to 3 meters (`energy1_kwh`, `energy2_kwh`, `energy3_kwh`)
- `schema_id=0` (legacy): older energy/power delta encoding path remains decode-compatible
`n == 0` is used as sync request (no meter samples).
### `AckDown` (7 bytes)
`[flags:1][batch_id_be:2][epoch_utc_be:4]`
- `flags bit0`: `time_valid`
- Receiver repeats ACK (`ACK_REPEAT_COUNT=3`, `ACK_REPEAT_DELAY_MS=200`).
- Receiver sends ACK repeatedly (`ACK_REPEAT_COUNT=3`, `ACK_REPEAT_DELAY_MS=200`).
- Sender accepts time only if `time_valid=1` and `epoch >= MIN_ACCEPTED_EPOCH_UTC` (`2026-02-01 00:00:00 UTC`).
## Time Bootstrap Guardrail
On sender boot:
- `g_time_acquired=false`
- no normal sampling/transmit yet
- sync request every `SYNC_REQUEST_INTERVAL_MS` (15s)
- only sync requests every `SYNC_REQUEST_INTERVAL_MS` (15s)
- no normal sampling/transmit until valid ACK time received
Only after valid ACK time is received:
- system time is set
- normal 1 Hz sampling and periodic LoRa batch transmit start
This prevents publishing/storing pre-threshold timestamps.
This blocks pre-threshold timestamps from MQTT/SD paths.
## Multi-Meter Sender Behavior
Timezone handling:
- Local time rendering uses `TIMEZONE_TZ` from `include/config.h`.
- Default value is `CET-1CEST,M3.5.0/2,M10.5.0/3` and can be changed at compile time.
Implemented in `src/meter_driver.cpp` + sender path in `src/main.cpp`:
## Sender Meter Path
- Meter protocol: IEC 62056-21 ASCII, Mode D style framing (`/ ... !`)
- UART settings: `9600 7E1`
- Parsed OBIS: `1-0:1.8.0`
- Conversion: floor to integer kWh (`floorf`)
Implemented in `src/meter_driver.cpp` + sender loop in `src/main.cpp`:
Meter count is build-dependent (`include/config.h`):
- Debug builds (`SERIAL_DEBUG_MODE=1`): `METER_COUNT=2`
- Prod builds (`SERIAL_DEBUG_MODE=0`): `METER_COUNT=3`
- UART: `Serial2`, RX pin `GPIO34` (`PIN_METER_RX`), `9600 7E1`
- ESP32 RX buffer is enlarged to `8192` bytes to survive long LoRa blocking sections.
- Frame detection: starts at `'/'`, ends at `'!'`, timeout protection included (`METER_FRAME_TIMEOUT_MS=20000`).
- Parsing runs in a dedicated sender task and is handed to the main sender loop via queue.
- Parsed OBIS values:
- `1-0:1.8.0` (total energy)
- `1-0:16.7.0` (total power)
- `1-0:36.7.0`, `56.7.0`, `76.7.0` (phase powers)
- `1-0:1.8.0*Wh` is automatically scaled to kWh
Sender samples every second and transmits batches every 30 seconds.
Default RX pins:
- Meter1: `GPIO34` (`Serial2`)
- Meter2: `GPIO25` (`Serial1`)
- Meter3: `GPIO3` (`Serial`, prod only because debug serial is disabled)
## Receiver Behavior
@@ -83,7 +78,7 @@ For valid `BatchUp` decode:
2. Send `AckDown` immediately.
3. Drop duplicate batches per sender (`batch_id` tracking).
4. If `n==0`: treat as sync request only.
5. Else convert samples, log to SD, update web UI, publish MQTT.
5. Else convert to `MeterData`, log to SD, update web UI, publish MQTT.
## MQTT Topics and Payloads
@@ -93,22 +88,21 @@ State topic:
Fault topic (retained):
- `smartmeter/<device_id>/faults`
State JSON fields (`src/json_codec.cpp`):
- `id`, `ts`, `e_kwh`
- `p_w`, `p1_w`, `p2_w`, `p3_w`
For `EnergyMulti` samples, state JSON includes:
- `id`, `ts`
- `energy1_kwh`, `energy2_kwh`, optional `energy3_kwh`
- `bat_v`, `bat_pct`
- optional link fields: `rssi`, `snr`
- fault/reject fields: `err_last`, `rx_reject`, `rx_reject_text` (+ non-zero counters)
Home Assistant discovery is enabled (`ENABLE_HA_DISCOVERY=true`) and publishes config topics under:
- `homeassistant/sensor/<device_id>/<key>/config`
Home Assistant discovery publishing is enabled (`ENABLE_HA_DISCOVERY=true`) but still advertises legacy keys (`e_kwh`, `p_w`, `p1_w`, `p2_w`, `p3_w`) in `src/mqtt_client.cpp`.
## Web UI, Wi-Fi, Storage
- Wi-Fi/MQTT/NTP/web-auth config persists in Preferences (`wifi_manager`).
- AP fallback SSID prefix: `DD3-Bridge-`.
- Default web credentials: `admin/admin`.
- SD logging enabled (`ENABLE_SD_LOGGING=true`).
- STA config is stored in Preferences (`wifi_manager`).
- If STA/MQTT config is unavailable, receiver starts AP mode with SSID prefix `DD3-Bridge-`.
- Web auth defaults are `admin/admin` (`WEB_AUTH_DEFAULT_USER/PASS`).
- SD logging is enabled (`ENABLE_SD_LOGGING=true`).
## Build Environments
@@ -132,4 +126,4 @@ Example:
## Test Mode
`ENABLE_TEST_MODE` replaces normal sender/receiver loops with dedicated test loops (`src/test_mode.cpp`).
It sends/receives JSON test frames and publishes to `smartmeter/<device_id>/test`.
It sends/receives plain JSON test frames and publishes to `smartmeter/<device_id>/test`.

View File

@@ -32,7 +32,9 @@ constexpr uint8_t PIN_BAT_ADC = 35;
constexpr uint8_t PIN_ROLE = 14;
constexpr uint8_t PIN_OLED_CTRL = 13;
constexpr uint8_t PIN_METER_RX = 34;
constexpr uint8_t PIN_METER1_RX = 34; // UART2 RX
constexpr uint8_t PIN_METER2_RX = 25; // UART1 RX
constexpr uint8_t PIN_METER3_RX = 3; // UART0 RX (prod only, when serial debug is off)
// LoRa settings
#ifndef LORA_FREQUENCY_HZ
@@ -68,6 +70,9 @@ constexpr bool ENABLE_HA_DISCOVERY = true;
#define SERIAL_DEBUG_MODE_FLAG 0
#endif
constexpr bool SERIAL_DEBUG_MODE = SERIAL_DEBUG_MODE_FLAG != 0;
constexpr uint8_t METER_COUNT_DEBUG = 2;
constexpr uint8_t METER_COUNT_PROD = 3;
constexpr uint8_t METER_COUNT = SERIAL_DEBUG_MODE ? METER_COUNT_DEBUG : METER_COUNT_PROD;
constexpr bool SERIAL_DEBUG_DUMP_JSON = false;
constexpr bool LORA_SEND_BYPASS = false;
constexpr bool ENABLE_SD_LOGGING = true;
@@ -79,7 +84,6 @@ constexpr uint16_t SD_HISTORY_MAX_DAYS = 30;
constexpr uint16_t SD_HISTORY_MIN_RES_MIN = 1;
constexpr uint16_t SD_HISTORY_MAX_BINS = 4000;
constexpr uint16_t SD_HISTORY_TIME_BUDGET_MS = 10;
constexpr const char *TIMEZONE_TZ = "CET-1CEST,M3.5.0/2,M10.5.0/3";
constexpr const char *AP_SSID_PREFIX = "DD3-Bridge-";
constexpr const char *AP_PASSWORD = "changeme123";
constexpr bool WEB_AUTH_REQUIRE_STA = true;

View File

@@ -28,6 +28,9 @@ struct MeterData {
uint32_t ts_utc;
uint16_t short_id;
char device_id[16];
bool energy_multi;
uint8_t energy_meter_count;
uint32_t energy_kwh_int[3];
float energy_total_kwh;
float phase_power_w[3];
float total_power_w;
@@ -47,6 +50,7 @@ struct MeterData {
struct SenderStatus {
MeterData last_data;
uint32_t last_update_ts_utc;
uint16_t last_acked_batch_id;
bool has_data;
};

View File

@@ -1,9 +1,8 @@
#pragma once
#include <Arduino.h>
#include "data_model.h"
void meter_init();
bool meter_read(MeterData &data);
bool meter_poll_frame(const char *&frame, size_t &len);
bool meter_parse_frame(const char *frame, size_t len, MeterData &data);
void meter_poll();
uint8_t meter_count();
bool meter_get_last_energy_kwh(uint8_t meter_idx, uint32_t &out_energy_kwh);

View File

@@ -350,9 +350,18 @@ static void render_receiver_sender(uint8_t index) {
#endif
display.setCursor(0, 12);
if (status.last_data.energy_multi) {
display.printf("E1 %lu E2 %lu", static_cast<unsigned long>(status.last_data.energy_kwh_int[0]),
static_cast<unsigned long>(status.last_data.energy_kwh_int[1]));
} else {
display.printf("E %.2f kWh", status.last_data.energy_total_kwh);
}
display.setCursor(0, 22);
if (status.last_data.energy_multi && status.last_data.energy_meter_count >= 3) {
display.printf("E3 %lu", static_cast<unsigned long>(status.last_data.energy_kwh_int[2]));
} else {
display.printf("L1 %dW", static_cast<int>(round_power_w(status.last_data.phase_power_w[0])));
}
display.setCursor(0, 32);
display.printf("L2 %dW", static_cast<int>(round_power_w(status.last_data.phase_power_w[1])));
display.setCursor(0, 42);

View File

@@ -3,8 +3,6 @@
#include <limits.h>
#include <math.h>
static constexpr size_t STATE_JSON_DOC_CAPACITY = 512;
static float round2(float value) {
if (isnan(value)) {
return value;
@@ -60,16 +58,24 @@ static void set_int_or_null(JsonDocument &doc, const char *key, float value) {
}
bool meterDataToJson(const MeterData &data, String &out_json) {
StaticJsonDocument<STATE_JSON_DOC_CAPACITY> doc;
StaticJsonDocument<320> doc;
doc["id"] = short_id_from_device_id(data.device_id);
doc["ts"] = data.ts_utc;
char buf[16];
if (data.energy_multi) {
doc["energy1_kwh"] = data.energy_kwh_int[0];
doc["energy2_kwh"] = data.energy_kwh_int[1];
if (data.energy_meter_count >= 3) {
doc["energy3_kwh"] = data.energy_kwh_int[2];
}
} else {
format_float_2(buf, sizeof(buf), data.energy_total_kwh);
doc["e_kwh"] = serialized(buf);
set_int_or_null(doc, "p_w", data.total_power_w);
set_int_or_null(doc, "p1_w", data.phase_power_w[0]);
set_int_or_null(doc, "p2_w", data.phase_power_w[1]);
set_int_or_null(doc, "p3_w", data.phase_power_w[2]);
}
format_float_2(buf, sizeof(buf), data.battery_voltage_v);
doc["bat_v"] = serialized(buf);
doc["bat_pct"] = data.battery_percent;
@@ -92,5 +98,5 @@ bool meterDataToJson(const MeterData &data, String &out_json) {
out_json = "";
size_t len = serializeJson(doc, out_json);
return len > 0;
return len > 0 && len < 320;
}

View File

@@ -17,9 +17,6 @@
#ifdef ARDUINO_ARCH_ESP32
#include <esp_task_wdt.h>
#include <esp_system.h>
#include <freertos/FreeRTOS.h>
#include <freertos/queue.h>
#include <freertos/task.h>
#endif
static DeviceRole g_role = DeviceRole::Sender;
@@ -29,6 +26,7 @@ static char g_device_id[16] = "";
static SenderStatus g_sender_statuses[NUM_SENDERS];
static bool g_ap_mode = false;
static WifiMqttConfig g_cfg;
static uint32_t g_boot_ms = 0;
static FaultCounters g_sender_faults = {};
static FaultCounters g_receiver_faults = {};
static FaultCounters g_receiver_faults_published = {};
@@ -57,11 +55,10 @@ struct BatchBuffer {
uint16_t batch_id;
bool batch_id_valid;
uint8_t count;
uint16_t attempt_count;
uint16_t valid_count;
uint16_t invalid_count;
FaultType last_error;
MeterData samples[METER_BATCH_MAX_SAMPLES];
struct EnergySample {
uint32_t ts_utc;
uint32_t energy_kwh[3];
} samples[METER_BATCH_MAX_SAMPLES];
};
static BatchBuffer g_batch_queue[BATCH_QUEUE_DEPTH];
@@ -69,7 +66,7 @@ static uint8_t g_batch_head = 0;
static uint8_t g_batch_tail = 0;
static uint8_t g_batch_count = 0;
static MeterData g_build_samples[METER_BATCH_MAX_SAMPLES];
static BatchBuffer::EnergySample g_build_samples[METER_BATCH_MAX_SAMPLES];
static uint8_t g_build_count = 0;
static uint32_t g_last_sample_ms = 0;
@@ -85,7 +82,7 @@ static uint16_t g_last_acked_batch_id = 0;
static uint8_t g_batch_retry_count = 0;
static bool g_batch_ack_pending = false;
static uint32_t g_batch_ack_timeout_ms = BATCH_ACK_TIMEOUT_MS;
static MeterData g_inflight_samples[METER_BATCH_MAX_SAMPLES];
static BatchBuffer::EnergySample g_inflight_samples[METER_BATCH_MAX_SAMPLES];
static uint8_t g_inflight_count = 0;
static uint16_t g_inflight_batch_id = 0;
static bool g_inflight_active = false;
@@ -96,39 +93,12 @@ static uint32_t g_sender_sleep_ms = 0;
static uint32_t g_sender_power_log_ms = 0;
static RxRejectReason g_sender_rx_reject_reason = RxRejectReason::None;
static uint32_t g_sender_rx_reject_log_ms = 0;
static MeterData g_last_meter_data = {};
static bool g_last_meter_valid = false;
static uint32_t g_last_meter_rx_ms = 0;
static uint32_t g_meter_stale_seconds = 0;
static uint32_t g_last_energy_kwh[3] = {};
static bool g_last_energy_valid[3] = {};
static bool g_time_acquired = false;
static uint32_t g_last_sync_request_ms = 0;
static uint32_t g_build_attempts = 0;
static uint32_t g_build_valid = 0;
static uint32_t g_build_invalid = 0;
static constexpr uint32_t METER_SAMPLE_MAX_AGE_MS = 15000;
struct MeterSampleEvent {
MeterData data;
uint32_t rx_ms;
};
#ifdef ARDUINO_ARCH_ESP32
static QueueHandle_t g_meter_sample_queue = nullptr;
static TaskHandle_t g_meter_reader_task = nullptr;
static bool g_meter_reader_task_running = false;
static constexpr UBaseType_t METER_SAMPLE_QUEUE_LEN = 8;
static constexpr uint32_t METER_READER_TASK_STACK_WORDS = 4096;
static constexpr UBaseType_t METER_READER_TASK_PRIORITY = 2;
static constexpr BaseType_t METER_READER_TASK_CORE = 0;
#endif
enum class TxBuildError : uint8_t {
None = 0,
Encode = 1
};
static TxBuildError g_last_tx_build_error = TxBuildError::None;
static void watchdog_kick();
static void finish_inflight_batch();
static void serial_debug_printf(const char *fmt, ...) {
if (!SERIAL_DEBUG_MODE) {
@@ -142,117 +112,6 @@ static void serial_debug_printf(const char *fmt, ...) {
Serial.println(buf);
}
static void set_last_meter_sample(const MeterData &parsed, uint32_t rx_ms) {
g_last_meter_data = parsed;
g_last_meter_valid = true;
g_last_meter_rx_ms = rx_ms;
g_meter_stale_seconds = 0;
}
static bool parse_meter_frame_sample(const char *frame, size_t frame_len, MeterData &parsed) {
parsed = {};
parsed.energy_total_kwh = NAN;
parsed.total_power_w = NAN;
parsed.phase_power_w[0] = NAN;
parsed.phase_power_w[1] = NAN;
parsed.phase_power_w[2] = NAN;
parsed.valid = false;
return meter_parse_frame(frame, frame_len, parsed);
}
#ifdef ARDUINO_ARCH_ESP32
static void meter_queue_push_latest(const MeterSampleEvent &event) {
if (!g_meter_sample_queue) {
return;
}
if (xQueueSend(g_meter_sample_queue, &event, 0) == pdTRUE) {
return;
}
MeterSampleEvent dropped = {};
xQueueReceive(g_meter_sample_queue, &dropped, 0);
if (xQueueSend(g_meter_sample_queue, &event, 0) != pdTRUE && SERIAL_DEBUG_MODE) {
serial_debug_printf("meter: queue push failed");
}
}
static void meter_reader_task_entry(void *arg) {
(void)arg;
for (;;) {
const char *frame = nullptr;
size_t frame_len = 0;
if (!meter_poll_frame(frame, frame_len)) {
vTaskDelay(pdMS_TO_TICKS(5));
continue;
}
MeterData parsed = {};
if (parse_meter_frame_sample(frame, frame_len, parsed)) {
MeterSampleEvent event = {};
event.data = parsed;
event.rx_ms = millis();
meter_queue_push_latest(event);
}
}
}
static bool meter_reader_start() {
if (g_meter_reader_task_running) {
return true;
}
if (!g_meter_sample_queue) {
g_meter_sample_queue = xQueueCreate(METER_SAMPLE_QUEUE_LEN, sizeof(MeterSampleEvent));
if (!g_meter_sample_queue) {
if (SERIAL_DEBUG_MODE) {
serial_debug_printf("meter: queue alloc failed");
}
return false;
}
}
BaseType_t rc = xTaskCreatePinnedToCore(
meter_reader_task_entry,
"meter_reader",
METER_READER_TASK_STACK_WORDS,
nullptr,
METER_READER_TASK_PRIORITY,
&g_meter_reader_task,
METER_READER_TASK_CORE);
if (rc != pdPASS) {
if (SERIAL_DEBUG_MODE) {
serial_debug_printf("meter: task start failed rc=%ld", static_cast<long>(rc));
}
return false;
}
g_meter_reader_task_running = true;
serial_debug_printf("meter: reader task core=%ld queue=%u",
static_cast<long>(METER_READER_TASK_CORE),
static_cast<unsigned>(METER_SAMPLE_QUEUE_LEN));
return true;
}
#endif
static void meter_reader_pump(uint32_t now_ms) {
#ifdef ARDUINO_ARCH_ESP32
if (g_meter_reader_task_running && g_meter_sample_queue) {
MeterSampleEvent event = {};
while (xQueueReceive(g_meter_sample_queue, &event, 0) == pdTRUE) {
set_last_meter_sample(event.data, event.rx_ms);
}
return;
}
#endif
const char *frame = nullptr;
size_t frame_len = 0;
if (!meter_poll_frame(frame, frame_len)) {
return;
}
MeterData parsed = {};
if (parse_meter_frame_sample(frame, frame_len, parsed)) {
set_last_meter_sample(parsed, now_ms);
}
}
static uint16_t g_last_batch_id_rx[NUM_SENDERS] = {};
struct BatchRxState {
@@ -274,6 +133,7 @@ static void init_sender_statuses() {
g_sender_statuses[i] = {};
g_sender_statuses[i].has_data = false;
g_sender_statuses[i].last_update_ts_utc = 0;
g_sender_statuses[i].last_acked_batch_id = 0;
g_sender_statuses[i].last_data.short_id = EXPECTED_SENDER_IDS[i];
snprintf(g_sender_statuses[i].last_data.device_id, sizeof(g_sender_statuses[i].last_data.device_id), "dd3-%04X", EXPECTED_SENDER_IDS[i]);
g_sender_faults_remote[i] = {};
@@ -336,7 +196,7 @@ static BatchBuffer *batch_queue_peek() {
return &g_batch_queue[g_batch_tail];
}
static void batch_queue_enqueue(const MeterData *samples, uint8_t count) {
static void batch_queue_enqueue(const BatchBuffer::EnergySample *samples, uint8_t count) {
if (!samples || count == 0) {
return;
}
@@ -349,10 +209,6 @@ static void batch_queue_enqueue(const MeterData *samples, uint8_t count) {
slot.batch_id = 0;
slot.batch_id_valid = false;
slot.count = count;
slot.attempt_count = static_cast<uint16_t>(g_build_attempts);
slot.valid_count = static_cast<uint16_t>(g_build_valid);
slot.invalid_count = static_cast<uint16_t>(g_build_invalid);
slot.last_error = g_sender_last_error;
for (uint8_t i = 0; i < count; ++i) {
slot.samples[i] = samples[i];
}
@@ -360,28 +216,6 @@ static void batch_queue_enqueue(const MeterData *samples, uint8_t count) {
g_batch_count++;
}
static void reset_build_counters() {
g_build_attempts = 0;
g_build_valid = 0;
g_build_invalid = 0;
}
static bool append_meter_sample(const MeterData &data, bool meter_ok) {
if (!meter_ok) {
g_build_invalid++;
return false;
}
g_last_sample_ts_utc = data.ts_utc;
g_build_samples[g_build_count++] = data;
g_build_valid++;
if (g_build_count >= METER_BATCH_MAX_SAMPLES) {
batch_queue_enqueue(g_build_samples, g_build_count);
g_build_count = 0;
reset_build_counters();
}
return true;
}
static uint32_t last_sample_ts() {
if (g_last_sample_ts_utc == 0) {
uint32_t now_utc = time_get_utc();
@@ -497,50 +331,6 @@ static uint16_t short_id_from_sender_id(uint16_t sender_id) {
return EXPECTED_SENDER_IDS[sender_id - 1];
}
static uint32_t kwh_to_wh_from_float(float value) {
if (isnan(value)) {
return 0;
}
double wh = static_cast<double>(value) * 1000.0;
if (wh < 0.0) {
wh = 0.0;
}
if (wh > static_cast<double>(UINT32_MAX)) {
wh = static_cast<double>(UINT32_MAX);
}
return static_cast<uint32_t>(llround(wh));
}
static bool float_to_i16_w(float value, int16_t &out) {
if (isnan(value)) {
out = 0;
return true;
}
long rounded = lroundf(value);
if (rounded < INT16_MIN || rounded > INT16_MAX) {
return false;
}
out = static_cast<int16_t>(rounded);
return true;
}
static int16_t float_to_i16_w_clamped(float value, bool &clamped) {
clamped = false;
if (isnan(value)) {
return 0;
}
long rounded = lroundf(value);
if (rounded < INT16_MIN) {
clamped = true;
return INT16_MIN;
}
if (rounded > INT16_MAX) {
clamped = true;
return INT16_MAX;
}
return static_cast<int16_t>(rounded);
}
static uint16_t battery_mv_from_voltage(float value) {
if (isnan(value) || value <= 0.0f) {
return 0;
@@ -667,15 +457,6 @@ static bool prepare_inflight_from_queue() {
batch->batch_id = g_batch_id;
batch->batch_id_valid = true;
}
if (SERIAL_DEBUG_MODE) {
serial_debug_printf("batch: id=%u desired=%u attempts=%u valid=%u invalid=%u err_last=%u",
batch->batch_id,
static_cast<unsigned>(METER_BATCH_MAX_SAMPLES),
static_cast<unsigned>(batch->attempt_count),
static_cast<unsigned>(batch->valid_count),
static_cast<unsigned>(batch->invalid_count),
static_cast<unsigned>(batch->last_error));
}
g_inflight_count = batch->count;
g_inflight_batch_id = batch->batch_id;
for (uint8_t i = 0; i < g_inflight_count; ++i) {
@@ -686,11 +467,11 @@ static bool prepare_inflight_from_queue() {
}
static bool send_inflight_batch(uint32_t ts_for_display) {
g_last_tx_build_error = TxBuildError::None;
if (!g_inflight_active) {
return false;
}
BatchInput input = {};
input.schema_id = 1;
input.sender_id = sender_id_from_short_id(g_short_id);
input.batch_id = g_inflight_batch_id;
input.t_last = g_inflight_sync_request ? time_get_utc() :
@@ -698,51 +479,23 @@ static bool send_inflight_batch(uint32_t ts_for_display) {
uint32_t dt_s = METER_SAMPLE_INTERVAL_MS / 1000;
input.dt_s = dt_s > 0 ? static_cast<uint8_t>(dt_s) : 1;
input.n = g_inflight_sync_request ? 0 : g_inflight_count;
input.battery_mV = g_inflight_sync_request ? battery_mv_from_voltage(g_last_battery_voltage_v) :
battery_mv_from_voltage(g_inflight_samples[g_inflight_count - 1].battery_voltage_v);
input.meter_count = METER_COUNT;
input.battery_mV = battery_mv_from_voltage(g_last_battery_voltage_v);
input.err_m = g_sender_faults.meter_read_fail > 255 ? 255 : static_cast<uint8_t>(g_sender_faults.meter_read_fail);
input.err_d = g_sender_faults.decode_fail > 255 ? 255 : static_cast<uint8_t>(g_sender_faults.decode_fail);
input.err_tx = g_sender_faults.lora_tx_fail > 255 ? 255 : static_cast<uint8_t>(g_sender_faults.lora_tx_fail);
input.err_last = static_cast<uint8_t>(g_sender_last_error);
input.err_rx_reject = static_cast<uint8_t>(g_sender_rx_reject_reason);
uint8_t energy_regressions = 0;
uint8_t phase_clamps = 0;
for (uint8_t i = 0; i < input.n; ++i) {
input.energy_wh[i] = kwh_to_wh_from_float(g_inflight_samples[i].energy_total_kwh);
if (i > 0 && input.energy_wh[i] < input.energy_wh[i - 1]) {
input.energy_wh[i] = input.energy_wh[i - 1];
if (energy_regressions < 255) {
energy_regressions++;
}
}
bool c1 = false;
bool c2 = false;
bool c3 = false;
input.p1_w[i] = float_to_i16_w_clamped(g_inflight_samples[i].phase_power_w[0], c1);
input.p2_w[i] = float_to_i16_w_clamped(g_inflight_samples[i].phase_power_w[1], c2);
input.p3_w[i] = float_to_i16_w_clamped(g_inflight_samples[i].phase_power_w[2], c3);
if (c1 && phase_clamps < 255) {
phase_clamps++;
}
if (c2 && phase_clamps < 255) {
phase_clamps++;
}
if (c3 && phase_clamps < 255) {
phase_clamps++;
}
}
if (SERIAL_DEBUG_MODE && (energy_regressions > 0 || phase_clamps > 0)) {
serial_debug_printf("tx: sanitize batch_id=%u energy_regress=%u phase_clamps=%u",
g_inflight_batch_id,
static_cast<unsigned>(energy_regressions),
static_cast<unsigned>(phase_clamps));
input.energy1_kwh[i] = g_inflight_samples[i].energy_kwh[0];
input.energy2_kwh[i] = g_inflight_samples[i].energy_kwh[1];
input.energy3_kwh[i] = g_inflight_samples[i].energy_kwh[2];
}
static uint8_t encoded[BATCH_MAX_COMPRESSED];
size_t encoded_len = 0;
uint32_t encode_start = millis();
if (!encode_batch(input, encoded, sizeof(encoded), &encoded_len)) {
g_last_tx_build_error = TxBuildError::Encode;
return false;
}
uint32_t encode_ms = millis() - encode_start;
@@ -788,13 +541,6 @@ static bool send_meter_batch(uint32_t ts_for_display) {
g_last_sent_batch_id = g_inflight_batch_id;
g_batch_ack_pending = true;
} else {
if (g_last_tx_build_error == TxBuildError::Encode) {
serial_debug_printf("tx: encode failed batch_id=%u dropped", g_inflight_batch_id);
note_fault(g_sender_faults, g_sender_last_error, g_sender_last_error_utc, g_sender_last_error_ms, FaultType::Decode);
display_set_last_error(g_sender_last_error, g_sender_last_error_utc, g_sender_last_error_ms);
finish_inflight_batch();
return false;
}
g_inflight_active = false;
g_inflight_count = 0;
g_inflight_batch_id = 0;
@@ -814,15 +560,6 @@ static bool send_sync_request() {
g_inflight_sync_request = true;
g_inflight_count = 0;
g_inflight_batch_id = g_batch_id;
if (SERIAL_DEBUG_MODE && g_build_attempts > 0) {
serial_debug_printf("batch: id=%u desired=%u attempts=%u valid=%u invalid=%u err_last=%u sync=1",
g_inflight_batch_id,
static_cast<unsigned>(METER_BATCH_MAX_SAMPLES),
static_cast<unsigned>(g_build_attempts),
static_cast<unsigned>(g_build_valid),
static_cast<unsigned>(g_build_invalid),
static_cast<unsigned>(g_sender_last_error));
}
bool ok = send_inflight_batch(time_get_utc());
if (ok) {
g_last_sent_batch_id = g_inflight_batch_id;
@@ -927,13 +664,16 @@ static bool process_batch_packet(const LoraPacket &pkt, BatchInput &out_batch, b
}
void setup() {
if (SERIAL_DEBUG_MODE) {
Serial.begin(115200);
delay(200);
}
#ifdef PAYLOAD_CODEC_TEST
payload_codec_self_test();
#endif
watchdog_init();
g_boot_ms = millis();
g_role = detect_role();
init_device_ids(g_short_id, g_device_id, sizeof(g_device_id));
display_set_role(g_role);
@@ -953,11 +693,6 @@ void setup() {
power_sender_init();
power_configure_unused_pins_sender();
meter_init();
#ifdef ARDUINO_ARCH_ESP32
if (!meter_reader_start()) {
serial_debug_printf("meter: using inline polling fallback");
}
#endif
g_last_sample_ms = millis() - METER_SAMPLE_INTERVAL_MS;
g_last_send_ms = millis();
g_last_sync_request_ms = millis() - SYNC_REQUEST_INTERVAL_MS;
@@ -1015,84 +750,66 @@ static void sender_loop() {
g_batch_retry_count);
}
meter_reader_pump(now_ms);
if (g_time_acquired) {
while (now_ms - g_last_sample_ms >= METER_SAMPLE_INTERVAL_MS) {
g_last_sample_ms += METER_SAMPLE_INTERVAL_MS;
MeterData data = {};
data.short_id = g_short_id;
strncpy(data.device_id, g_device_id, sizeof(data.device_id));
data.energy_total_kwh = NAN;
data.total_power_w = NAN;
data.phase_power_w[0] = NAN;
data.phase_power_w[1] = NAN;
data.phase_power_w[2] = NAN;
g_build_attempts++;
uint32_t meter_age_ms = g_last_meter_valid ? (now_ms - g_last_meter_rx_ms) : UINT32_MAX;
// Reuse recent good samples to bridge short parser gaps without accepting stale data forever.
bool meter_ok = g_last_meter_valid && meter_age_ms <= METER_SAMPLE_MAX_AGE_MS;
if (meter_ok) {
data.energy_total_kwh = g_last_meter_data.energy_total_kwh;
data.total_power_w = g_last_meter_data.total_power_w;
data.phase_power_w[0] = g_last_meter_data.phase_power_w[0];
data.phase_power_w[1] = g_last_meter_data.phase_power_w[1];
data.phase_power_w[2] = g_last_meter_data.phase_power_w[2];
g_meter_stale_seconds = meter_age_ms >= 1000 ? (meter_age_ms / 1000) : 0;
} else {
g_meter_stale_seconds = g_last_meter_valid ? (meter_age_ms / 1000) : (g_meter_stale_seconds + 1);
meter_poll();
for (uint8_t i = 0; i < meter_count() && i < 3; ++i) {
uint32_t e_kwh = 0;
if (meter_get_last_energy_kwh(i, e_kwh)) {
g_last_energy_kwh[i] = e_kwh;
g_last_energy_valid[i] = true;
}
if (!meter_ok) {
}
if (now_ms - g_last_sample_ms >= METER_SAMPLE_INTERVAL_MS) {
g_last_sample_ms = now_ms;
bool any_meter_valid = false;
for (uint8_t i = 0; i < meter_count() && i < 3; ++i) {
if (g_last_energy_valid[i]) {
any_meter_valid = true;
break;
}
}
if (!any_meter_valid) {
note_fault(g_sender_faults, g_sender_last_error, g_sender_last_error_utc, g_sender_last_error_ms, FaultType::MeterRead);
display_set_last_error(g_sender_last_error, g_sender_last_error_utc, g_sender_last_error_ms);
} else {
BatchBuffer::EnergySample sample = {};
sample.ts_utc = time_get_utc();
sample.energy_kwh[0] = g_last_energy_valid[0] ? g_last_energy_kwh[0] : 0;
sample.energy_kwh[1] = g_last_energy_valid[1] ? g_last_energy_kwh[1] : 0;
sample.energy_kwh[2] = (meter_count() >= 3 && g_last_energy_valid[2]) ? g_last_energy_kwh[2] : 0;
g_last_sample_ts_utc = sample.ts_utc;
g_build_samples[g_build_count++] = sample;
if (g_build_count >= METER_BATCH_MAX_SAMPLES) {
batch_queue_enqueue(g_build_samples, g_build_count);
g_build_count = 0;
}
MeterData view = {};
view.short_id = g_short_id;
strncpy(view.device_id, g_device_id, sizeof(view.device_id));
view.ts_utc = sample.ts_utc;
view.energy_multi = true;
view.energy_meter_count = meter_count();
view.energy_kwh_int[0] = sample.energy_kwh[0];
view.energy_kwh_int[1] = sample.energy_kwh[1];
view.energy_kwh_int[2] = sample.energy_kwh[2];
view.energy_total_kwh = static_cast<float>(sample.energy_kwh[0]);
view.valid = true;
view.battery_voltage_v = g_last_battery_voltage_v;
view.battery_percent = g_last_battery_percent;
display_set_last_meter(view);
display_set_last_read(true, view.ts_utc);
}
if (g_build_count == 0 && battery_sample_due(now_ms)) {
update_battery_cache();
}
data.battery_voltage_v = g_last_battery_voltage_v;
data.battery_percent = g_last_battery_percent;
data.rx_reject_reason = static_cast<uint8_t>(g_sender_rx_reject_reason);
uint32_t sample_ts_utc = time_get_utc();
if (sample_ts_utc > 0 && now_ms > g_last_sample_ms) {
uint32_t lag_s = (now_ms - g_last_sample_ms) / 1000;
if (sample_ts_utc > lag_s) {
sample_ts_utc -= lag_s;
}
}
data.ts_utc = sample_ts_utc;
data.valid = meter_ok;
bool appended = append_meter_sample(data, meter_ok);
if (SERIAL_DEBUG_MODE) {
serial_debug_printf("sample: i=%lu ok=%u appended=%u e_kwh=%.3f p1=%.1f p2=%.1f p3=%.1f ms=%lu",
static_cast<unsigned long>(g_build_attempts),
meter_ok ? 1U : 0U,
appended ? 1U : 0U,
static_cast<double>(data.energy_total_kwh),
static_cast<double>(data.phase_power_w[0]),
static_cast<double>(data.phase_power_w[1]),
static_cast<double>(data.phase_power_w[2]),
static_cast<unsigned long>(now_ms));
}
display_set_last_meter(data);
display_set_last_read(meter_ok, data.ts_utc);
}
if (!g_batch_ack_pending && now_ms - g_last_send_ms >= METER_SEND_INTERVAL_MS) {
g_last_send_ms = now_ms;
if (g_build_count > 0) {
batch_queue_enqueue(g_build_samples, g_build_count);
g_build_count = 0;
reset_build_counters();
}
if (g_batch_count > 0) {
send_meter_batch(last_sample_ts());
} else if (g_build_attempts > 0) {
if (send_sync_request()) {
reset_build_counters();
}
}
}
} else {
if (!g_batch_ack_pending && now_ms - g_last_sync_request_ms >= SYNC_REQUEST_INTERVAL_MS) {
@@ -1307,11 +1024,24 @@ static void receiver_loop() {
snprintf(data.device_id, sizeof(data.device_id), "dd3-0000");
}
data.ts_utc = t_first + static_cast<uint32_t>(s) * batch.dt_s;
if (batch.schema_id == 1) {
data.energy_multi = true;
data.energy_meter_count = batch.meter_count;
data.energy_kwh_int[0] = batch.energy1_kwh[s];
data.energy_kwh_int[1] = batch.energy2_kwh[s];
data.energy_kwh_int[2] = batch.energy3_kwh[s];
data.energy_total_kwh = static_cast<float>(batch.energy1_kwh[s]);
data.phase_power_w[0] = 0.0f;
data.phase_power_w[1] = 0.0f;
data.phase_power_w[2] = 0.0f;
data.total_power_w = 0.0f;
} else {
data.energy_total_kwh = static_cast<float>(batch.energy_wh[s]) / 1000.0f;
data.phase_power_w[0] = static_cast<float>(batch.p1_w[s]);
data.phase_power_w[1] = static_cast<float>(batch.p2_w[s]);
data.phase_power_w[2] = static_cast<float>(batch.p3_w[s]);
data.total_power_w = data.phase_power_w[0] + data.phase_power_w[1] + data.phase_power_w[2];
}
data.battery_voltage_v = bat_v;
data.battery_percent = !isnan(bat_v) ? battery_percent_from_voltage(bat_v) : 0;
data.valid = true;
@@ -1327,6 +1057,7 @@ static void receiver_loop() {
}
if (sender_idx >= 0) {
g_sender_statuses[sender_idx].last_acked_batch_id = batch_id;
web_server_set_last_batch(static_cast<uint8_t>(sender_idx), samples, count);
for (size_t s = 0; s < count; ++s) {
mqtt_publish_state(samples[s]);

View File

@@ -4,9 +4,7 @@
#include <stdlib.h>
#include <string.h>
// LoRa TX/RX windows can block the main loop for several seconds at SF12.
// Keep partial frame state long enough so valid telegrams are not dropped.
static constexpr uint32_t METER_FRAME_TIMEOUT_MS = 20000;
static constexpr uint32_t METER_FRAME_TIMEOUT_MS = 1500;
static constexpr size_t METER_FRAME_MAX = 512;
enum class MeterRxState : uint8_t {
@@ -14,24 +12,23 @@ enum class MeterRxState : uint8_t {
InFrame = 1
};
static MeterRxState g_rx_state = MeterRxState::WaitStart;
static char g_frame_buf[METER_FRAME_MAX + 1];
static size_t g_frame_len = 0;
static uint32_t g_last_rx_ms = 0;
static uint32_t g_bytes_rx = 0;
static uint32_t g_frames_ok = 0;
static uint32_t g_frames_parse_fail = 0;
static uint32_t g_rx_overflow = 0;
static uint32_t g_rx_timeout = 0;
static uint32_t g_last_log_ms = 0;
struct MeterPort {
HardwareSerial *serial;
MeterRxState state;
char frame_buf[METER_FRAME_MAX + 1];
size_t frame_len;
uint32_t last_rx_ms;
uint32_t bytes_rx;
uint32_t frames_ok;
uint32_t frames_parse_fail;
uint32_t rx_overflow;
uint32_t rx_timeout;
uint32_t last_energy_kwh;
bool has_energy;
};
void meter_init() {
#ifdef ARDUINO_ARCH_ESP32
// Buffer enough serial data to survive long LoRa blocking sections.
Serial2.setRxBufferSize(8192);
#endif
Serial2.begin(9600, SERIAL_7E1, PIN_METER_RX, -1);
}
static MeterPort g_ports[METER_COUNT] = {};
static uint32_t g_last_log_ms = 0;
static bool parse_obis_ascii_value(const char *line, const char *obis, float &out_value) {
const char *p = strstr(line, obis);
@@ -68,35 +65,31 @@ static bool parse_obis_ascii_value(const char *line, const char *obis, float &ou
return true;
}
static bool parse_obis_ascii_unit_scale(const char *line, const char *obis, float &value) {
const char *p = strstr(line, obis);
if (!p) {
return false;
}
const char *asterisk = strchr(p, '*');
if (!asterisk) {
return false;
}
const char *end = strchr(asterisk, ')');
if (!end) {
return false;
}
char unit_buf[8];
size_t ulen = 0;
for (const char *c = asterisk + 1; c < end && ulen + 1 < sizeof(unit_buf); ++c) {
if (*c == ' ') {
static bool parse_energy_kwh_floor(const char *frame, size_t len, uint32_t &out_kwh) {
char line[128];
size_t line_len = 0;
for (size_t i = 0; i < len; ++i) {
char c = frame[i];
if (c == '\r') {
continue;
}
unit_buf[ulen++] = *c;
}
unit_buf[ulen] = '\0';
if (ulen == 0) {
return false;
}
if (strcmp(unit_buf, "Wh") == 0) {
value *= 0.001f;
if (c == '\n' || c == '!') {
line[line_len] = '\0';
float value = NAN;
if (parse_obis_ascii_value(line, "1-0:1.8.0", value) && !isnan(value) && value >= 0.0f) {
out_kwh = static_cast<uint32_t>(floorf(value));
return true;
}
line_len = 0;
if (c == '!') {
break;
}
continue;
}
if (line_len + 1 < sizeof(line)) {
line[line_len++] = c;
}
}
return false;
}
@@ -109,162 +102,105 @@ static void meter_debug_log() {
return;
}
g_last_log_ms = now_ms;
Serial.printf("meter: ok=%lu parse_fail=%lu overflow=%lu timeout=%lu bytes=%lu\n",
static_cast<unsigned long>(g_frames_ok),
static_cast<unsigned long>(g_frames_parse_fail),
static_cast<unsigned long>(g_rx_overflow),
static_cast<unsigned long>(g_rx_timeout),
static_cast<unsigned long>(g_bytes_rx));
for (uint8_t i = 0; i < METER_COUNT; ++i) {
const MeterPort &p = g_ports[i];
Serial.printf("meter%u: ok=%lu parse_fail=%lu overflow=%lu timeout=%lu bytes=%lu e=%lu valid=%u\n",
static_cast<unsigned>(i + 1),
static_cast<unsigned long>(p.frames_ok),
static_cast<unsigned long>(p.frames_parse_fail),
static_cast<unsigned long>(p.rx_overflow),
static_cast<unsigned long>(p.rx_timeout),
static_cast<unsigned long>(p.bytes_rx),
static_cast<unsigned long>(p.last_energy_kwh),
p.has_energy ? 1 : 0);
}
}
bool meter_poll_frame(const char *&frame, size_t &len) {
frame = nullptr;
len = 0;
void meter_init() {
g_ports[0].serial = &Serial2;
g_ports[0].serial->begin(9600, SERIAL_7E1, PIN_METER1_RX, -1);
g_ports[0].state = MeterRxState::WaitStart;
if (METER_COUNT >= 2) {
g_ports[1].serial = &Serial1;
g_ports[1].serial->begin(9600, SERIAL_7E1, PIN_METER2_RX, -1);
g_ports[1].state = MeterRxState::WaitStart;
}
if (METER_COUNT >= 3) {
g_ports[2].serial = &Serial;
g_ports[2].serial->begin(9600, SERIAL_7E1, PIN_METER3_RX, -1);
g_ports[2].state = MeterRxState::WaitStart;
}
}
static void meter_poll_port(MeterPort &port) {
if (!port.serial) {
return;
}
uint32_t now_ms = millis();
if (g_rx_state == MeterRxState::InFrame && (now_ms - g_last_rx_ms > METER_FRAME_TIMEOUT_MS)) {
g_rx_timeout++;
g_rx_state = MeterRxState::WaitStart;
g_frame_len = 0;
if (port.state == MeterRxState::InFrame && (now_ms - port.last_rx_ms > METER_FRAME_TIMEOUT_MS)) {
port.rx_timeout++;
port.state = MeterRxState::WaitStart;
port.frame_len = 0;
}
while (Serial2.available()) {
char c = static_cast<char>(Serial2.read());
g_bytes_rx++;
g_last_rx_ms = now_ms;
while (port.serial->available()) {
char c = static_cast<char>(port.serial->read());
port.bytes_rx++;
port.last_rx_ms = now_ms;
if (g_rx_state == MeterRxState::WaitStart) {
if (port.state == MeterRxState::WaitStart) {
if (c == '/') {
g_rx_state = MeterRxState::InFrame;
g_frame_len = 0;
g_frame_buf[g_frame_len++] = c;
port.state = MeterRxState::InFrame;
port.frame_len = 0;
port.frame_buf[port.frame_len++] = c;
}
continue;
}
if (g_frame_len + 1 >= sizeof(g_frame_buf)) {
g_rx_overflow++;
g_rx_state = MeterRxState::WaitStart;
g_frame_len = 0;
if (port.frame_len + 1 >= sizeof(port.frame_buf)) {
port.rx_overflow++;
port.state = MeterRxState::WaitStart;
port.frame_len = 0;
continue;
}
g_frame_buf[g_frame_len++] = c;
port.frame_buf[port.frame_len++] = c;
if (c == '!') {
g_frame_buf[g_frame_len] = '\0';
frame = g_frame_buf;
len = g_frame_len;
g_rx_state = MeterRxState::WaitStart;
g_frame_len = 0;
port.frame_buf[port.frame_len] = '\0';
uint32_t energy_kwh = 0;
if (parse_energy_kwh_floor(port.frame_buf, port.frame_len, energy_kwh)) {
port.last_energy_kwh = energy_kwh;
port.has_energy = true;
port.frames_ok++;
} else {
port.frames_parse_fail++;
}
port.state = MeterRxState::WaitStart;
port.frame_len = 0;
}
}
}
void meter_poll() {
for (uint8_t i = 0; i < METER_COUNT; ++i) {
meter_poll_port(g_ports[i]);
}
meter_debug_log();
}
uint8_t meter_count() {
return METER_COUNT;
}
bool meter_get_last_energy_kwh(uint8_t meter_idx, uint32_t &out_energy_kwh) {
if (meter_idx >= METER_COUNT) {
return false;
}
if (!g_ports[meter_idx].has_energy) {
return false;
}
out_energy_kwh = g_ports[meter_idx].last_energy_kwh;
return true;
}
}
meter_debug_log();
return false;
}
bool meter_parse_frame(const char *frame, size_t len, MeterData &data) {
if (!frame || len == 0) {
return false;
}
bool got_any = false;
bool energy_ok = false;
bool total_p_ok = false;
bool p1_ok = false;
bool p2_ok = false;
bool p3_ok = false;
char line[128];
size_t line_len = 0;
for (size_t i = 0; i < len; ++i) {
char c = frame[i];
if (c == '\r') {
continue;
}
if (c == '!') {
if (line_len + 1 < sizeof(line)) {
line[line_len++] = c;
}
line[line_len] = '\0';
data.valid = energy_ok || total_p_ok || p1_ok || p2_ok || p3_ok;
if (data.valid) {
g_frames_ok++;
} else {
g_frames_parse_fail++;
}
return data.valid;
}
if (c == '\n') {
line[line_len] = '\0';
if (line[0] == '!') {
data.valid = energy_ok || total_p_ok || p1_ok || p2_ok || p3_ok;
if (data.valid) {
g_frames_ok++;
} else {
g_frames_parse_fail++;
}
return data.valid;
}
float value = NAN;
if (parse_obis_ascii_value(line, "1-0:1.8.0", value)) {
parse_obis_ascii_unit_scale(line, "1-0:1.8.0", value);
data.energy_total_kwh = value;
energy_ok = true;
got_any = true;
}
if (parse_obis_ascii_value(line, "1-0:16.7.0", value)) {
data.total_power_w = value;
total_p_ok = true;
got_any = true;
}
if (parse_obis_ascii_value(line, "1-0:36.7.0", value)) {
data.phase_power_w[0] = value;
p1_ok = true;
got_any = true;
}
if (parse_obis_ascii_value(line, "1-0:56.7.0", value)) {
data.phase_power_w[1] = value;
p2_ok = true;
got_any = true;
}
if (parse_obis_ascii_value(line, "1-0:76.7.0", value)) {
data.phase_power_w[2] = value;
p3_ok = true;
got_any = true;
}
line_len = 0;
continue;
}
if (line_len + 1 < sizeof(line)) {
line[line_len++] = c;
}
}
data.valid = got_any;
if (data.valid) {
g_frames_ok++;
} else {
g_frames_parse_fail++;
}
return data.valid;
}
bool meter_read(MeterData &data) {
data.energy_total_kwh = NAN;
data.total_power_w = NAN;
data.phase_power_w[0] = NAN;
data.phase_power_w[1] = NAN;
data.phase_power_w[2] = NAN;
data.valid = false;
const char *frame = nullptr;
size_t len = 0;
if (!meter_poll_frame(frame, len)) {
return false;
}
return meter_parse_frame(frame, len, data);
}

View File

@@ -5,6 +5,8 @@ static constexpr uint16_t kMagic = 0xDDB3;
static constexpr uint8_t kSchema = 2;
static constexpr uint8_t kFlags = 0x01;
static constexpr size_t kMaxSamples = 30;
static constexpr uint8_t kPayloadSchemaLegacy = 0;
static constexpr uint8_t kPayloadSchemaEnergyMulti = 1;
static void write_u16_le(uint8_t *dst, uint16_t value) {
dst[0] = static_cast<uint8_t>(value & 0xFF);
@@ -108,13 +110,14 @@ bool encode_batch(const BatchInput &in, uint8_t *out, size_t out_cap, size_t *ou
return false;
}
size_t pos = 0;
if (!ensure_capacity(21, out_cap, pos)) {
if (!ensure_capacity(23, out_cap, pos)) {
return false;
}
write_u16_le(&out[pos], kMagic);
pos += 2;
out[pos++] = kSchema;
out[pos++] = kFlags;
out[pos++] = in.schema_id;
write_u16_le(&out[pos], in.sender_id);
pos += 2;
write_u16_le(&out[pos], in.batch_id);
@@ -130,12 +133,32 @@ bool encode_batch(const BatchInput &in, uint8_t *out, size_t out_cap, size_t *ou
out[pos++] = in.err_tx;
out[pos++] = in.err_last;
out[pos++] = in.err_rx_reject;
out[pos++] = in.meter_count;
if (in.n == 0) {
*out_len = pos;
return true;
}
if (in.schema_id == kPayloadSchemaEnergyMulti) {
if (in.meter_count == 0 || in.meter_count > 3) {
return false;
}
if (!ensure_capacity(static_cast<size_t>(in.n) * 12, out_cap, pos)) {
return false;
}
for (uint8_t i = 0; i < in.n; ++i) {
write_u32_le(&out[pos], in.energy1_kwh[i]);
pos += 4;
write_u32_le(&out[pos], in.energy2_kwh[i]);
pos += 4;
write_u32_le(&out[pos], in.energy3_kwh[i]);
pos += 4;
}
*out_len = pos;
return true;
}
if (!ensure_capacity(4, out_cap, pos)) {
return false;
}
@@ -189,7 +212,7 @@ bool decode_batch(const uint8_t *buf, size_t len, BatchInput *out) {
return false;
}
size_t pos = 0;
if (len < 21) {
if (len < 23) {
return false;
}
uint16_t magic = read_u16_le(&buf[pos]);
@@ -199,6 +222,7 @@ bool decode_batch(const uint8_t *buf, size_t len, BatchInput *out) {
if (magic != kMagic || schema != kSchema || (flags & 0x01) == 0) {
return false;
}
out->schema_id = buf[pos++];
out->sender_id = read_u16_le(&buf[pos]);
pos += 2;
out->batch_id = read_u16_le(&buf[pos]);
@@ -214,6 +238,7 @@ bool decode_batch(const uint8_t *buf, size_t len, BatchInput *out) {
out->err_tx = buf[pos++];
out->err_last = buf[pos++];
out->err_rx_reject = buf[pos++];
out->meter_count = buf[pos++];
if (out->n > kMaxSamples || out->dt_s == 0) {
return false;
@@ -227,6 +252,29 @@ bool decode_batch(const uint8_t *buf, size_t len, BatchInput *out) {
}
return pos == len;
}
if (out->schema_id == kPayloadSchemaEnergyMulti) {
if (out->meter_count == 0 || out->meter_count > 3) {
return false;
}
if (pos + static_cast<size_t>(out->n) * 12 > len) {
return false;
}
for (uint8_t i = 0; i < out->n; ++i) {
out->energy1_kwh[i] = read_u32_le(&buf[pos]);
pos += 4;
out->energy2_kwh[i] = read_u32_le(&buf[pos]);
pos += 4;
out->energy3_kwh[i] = read_u32_le(&buf[pos]);
pos += 4;
}
for (uint8_t i = out->n; i < kMaxSamples; ++i) {
out->energy1_kwh[i] = 0;
out->energy2_kwh[i] = 0;
out->energy3_kwh[i] = 0;
}
return pos == len;
}
if (pos + 4 > len) {
return false;
}
@@ -289,6 +337,7 @@ bool decode_batch(const uint8_t *buf, size_t len, BatchInput *out) {
#ifdef PAYLOAD_CODEC_TEST
bool payload_codec_self_test() {
BatchInput in = {};
in.schema_id = kPayloadSchemaLegacy;
in.sender_id = 1;
in.batch_id = 42;
in.t_last = 1700000000;
@@ -300,6 +349,7 @@ bool payload_codec_self_test() {
in.err_tx = 3;
in.err_last = 2;
in.err_rx_reject = 1;
in.meter_count = 0;
in.energy_wh[0] = 100000;
in.energy_wh[1] = 100001;
in.energy_wh[2] = 100050;

View File

@@ -3,17 +3,22 @@
#include <Arduino.h>
struct BatchInput {
uint8_t schema_id;
uint16_t sender_id;
uint16_t batch_id;
uint32_t t_last;
uint8_t dt_s;
uint8_t n;
uint8_t meter_count;
uint16_t battery_mV;
uint8_t err_m;
uint8_t err_d;
uint8_t err_tx;
uint8_t err_last;
uint8_t err_rx_reject;
uint32_t energy1_kwh[30];
uint32_t energy2_kwh[30];
uint32_t energy3_kwh[30];
uint32_t energy_wh[30];
int16_t p1_w[30];
int16_t p2_w[30];

View File

@@ -12,8 +12,93 @@
static uint32_t g_last_test_ms = 0;
static uint16_t g_test_code_counter = 1000;
static uint16_t g_test_batch_id = 1;
static uint16_t g_test_last_acked_batch_id = 0;
static constexpr uint32_t TEST_SEND_INTERVAL_MS = 30000;
static void write_u16_be(uint8_t *dst, uint16_t value) {
dst[0] = static_cast<uint8_t>((value >> 8) & 0xFF);
dst[1] = static_cast<uint8_t>(value & 0xFF);
}
static uint16_t read_u16_be(const uint8_t *src) {
return static_cast<uint16_t>(src[0] << 8) | static_cast<uint16_t>(src[1]);
}
static void write_u32_be(uint8_t *dst, uint32_t value) {
dst[0] = static_cast<uint8_t>((value >> 24) & 0xFF);
dst[1] = static_cast<uint8_t>((value >> 16) & 0xFF);
dst[2] = static_cast<uint8_t>((value >> 8) & 0xFF);
dst[3] = static_cast<uint8_t>(value & 0xFF);
}
static uint32_t read_u32_be(const uint8_t *src) {
return (static_cast<uint32_t>(src[0]) << 24) |
(static_cast<uint32_t>(src[1]) << 16) |
(static_cast<uint32_t>(src[2]) << 8) |
static_cast<uint32_t>(src[3]);
}
static uint32_t ack_window_ms() {
uint32_t air_ms = lora_airtime_ms(lora_frame_size(LORA_ACK_DOWN_PAYLOAD_LEN));
uint32_t window_ms = air_ms + 300;
if (window_ms < 1200) {
window_ms = 1200;
}
if (window_ms > 4000) {
window_ms = 4000;
}
return window_ms;
}
static bool receive_ack_for_batch(uint16_t batch_id, uint8_t &time_valid, uint32_t &ack_epoch, int16_t &rssi_dbm, float &snr_db) {
LoraPacket ack_pkt = {};
uint32_t window_ms = ack_window_ms();
bool got_ack = lora_receive_window(ack_pkt, window_ms);
if (!got_ack) {
got_ack = lora_receive_window(ack_pkt, window_ms / 2);
}
if (!got_ack || ack_pkt.msg_kind != LoraMsgKind::AckDown || ack_pkt.payload_len < LORA_ACK_DOWN_PAYLOAD_LEN) {
return false;
}
uint16_t ack_id = read_u16_be(&ack_pkt.payload[1]);
if (ack_id != batch_id) {
return false;
}
time_valid = ack_pkt.payload[0] & 0x01;
ack_epoch = read_u32_be(&ack_pkt.payload[3]);
rssi_dbm = ack_pkt.rssi_dbm;
snr_db = ack_pkt.snr_db;
return true;
}
static void send_test_ack(uint16_t self_short_id, uint16_t batch_id, uint8_t &time_valid, uint32_t &ack_epoch) {
ack_epoch = time_get_utc();
time_valid = (time_is_synced() && ack_epoch >= MIN_ACCEPTED_EPOCH_UTC) ? 1 : 0;
if (!time_valid) {
ack_epoch = 0;
}
LoraPacket ack = {};
ack.msg_kind = LoraMsgKind::AckDown;
ack.device_id_short = self_short_id;
ack.payload_len = LORA_ACK_DOWN_PAYLOAD_LEN;
ack.payload[0] = time_valid;
write_u16_be(&ack.payload[1], batch_id);
write_u32_be(&ack.payload[3], ack_epoch);
uint8_t repeats = ACK_REPEAT_COUNT == 0 ? 1 : ACK_REPEAT_COUNT;
for (uint8_t i = 0; i < repeats; ++i) {
lora_send(ack);
if (i + 1 < repeats && ACK_REPEAT_DELAY_MS > 0) {
delay(ACK_REPEAT_DELAY_MS);
}
}
lora_receive_continuous();
}
void test_sender_loop(uint16_t short_id, const char *device_id) {
if (millis() - g_last_test_ms < TEST_SEND_INTERVAL_MS) {
return;
@@ -36,11 +121,13 @@ void test_sender_loop(uint16_t short_id, const char *device_id) {
uint32_t now_utc = time_get_utc();
uint32_t ts = now_utc > 0 ? now_utc : millis() / 1000;
StaticJsonDocument<128> doc;
StaticJsonDocument<192> doc;
doc["id"] = device_id;
doc["role"] = "sender";
doc["test_code"] = code;
doc["ts"] = ts;
doc["batch_id"] = g_test_batch_id;
doc["last_acked"] = g_test_last_acked_batch_id;
char bat_buf[8];
snprintf(bat_buf, sizeof(bat_buf), "%.2f", data.battery_voltage_v);
doc["bat_v"] = serialized(bat_buf);
@@ -60,11 +147,32 @@ void test_sender_loop(uint16_t short_id, const char *device_id) {
pkt.device_id_short = short_id;
pkt.payload_len = json.length();
memcpy(pkt.payload, json.c_str(), pkt.payload_len);
lora_send(pkt);
if (!lora_send(pkt)) {
return;
}
uint8_t time_valid = 0;
uint32_t ack_epoch = 0;
int16_t ack_rssi = 0;
float ack_snr = 0.0f;
if (receive_ack_for_batch(g_test_batch_id, time_valid, ack_epoch, ack_rssi, ack_snr)) {
if (time_valid == 1 && ack_epoch >= MIN_ACCEPTED_EPOCH_UTC) {
time_set_utc(ack_epoch);
}
g_test_last_acked_batch_id = g_test_batch_id;
g_test_batch_id++;
if (SERIAL_DEBUG_MODE) {
Serial.printf("test ack: batch=%u time_valid=%u epoch=%lu rssi=%d snr=%.1f\n",
static_cast<unsigned>(g_test_last_acked_batch_id),
static_cast<unsigned>(time_valid),
static_cast<unsigned long>(ack_epoch),
static_cast<int>(ack_rssi),
static_cast<double>(ack_snr));
}
}
}
void test_receiver_loop(SenderStatus *statuses, uint8_t count, uint16_t self_short_id) {
(void)self_short_id;
LoraPacket pkt = {};
if (!lora_receive(pkt, 0)) {
return;
@@ -73,22 +181,28 @@ void test_receiver_loop(SenderStatus *statuses, uint8_t count, uint16_t self_sho
return;
}
uint8_t decompressed[160];
uint8_t decompressed[192];
if (pkt.payload_len >= sizeof(decompressed)) {
return;
}
memcpy(decompressed, pkt.payload, pkt.payload_len);
decompressed[pkt.payload_len] = '\0';
StaticJsonDocument<128> doc;
StaticJsonDocument<192> doc;
if (deserializeJson(doc, reinterpret_cast<const char *>(decompressed)) != DeserializationError::Ok) {
return;
}
const char *id = doc["id"] | "";
const char *code = doc["test_code"] | "";
uint16_t batch_id = static_cast<uint16_t>(doc["batch_id"] | 0);
uint32_t ts = doc["ts"] | 0;
float bat_v = doc["bat_v"] | NAN;
uint8_t time_valid = 0;
uint32_t ack_epoch = 0;
send_test_ack(self_short_id, batch_id, time_valid, ack_epoch);
for (uint8_t i = 0; i < count; ++i) {
if (strncmp(statuses[i].last_data.device_id, id, sizeof(statuses[i].last_data.device_id)) == 0) {
display_set_test_code_for_sender(i, code);
@@ -96,12 +210,34 @@ void test_receiver_loop(SenderStatus *statuses, uint8_t count, uint16_t self_sho
statuses[i].last_data.battery_voltage_v = bat_v;
statuses[i].last_data.battery_percent = battery_percent_from_voltage(bat_v);
}
statuses[i].last_data.link_valid = true;
statuses[i].last_data.link_rssi_dbm = pkt.rssi_dbm;
statuses[i].last_data.link_snr_db = pkt.snr_db;
statuses[i].last_data.ts_utc = ts;
statuses[i].last_acked_batch_id = batch_id;
statuses[i].has_data = true;
statuses[i].last_update_ts_utc = time_get_utc();
break;
}
}
mqtt_publish_test(id, String(reinterpret_cast<const char *>(decompressed)));
StaticJsonDocument<256> mqtt_doc;
mqtt_doc["id"] = id;
mqtt_doc["role"] = "receiver";
mqtt_doc["test_code"] = code;
mqtt_doc["ts"] = ts;
mqtt_doc["batch_id"] = batch_id;
mqtt_doc["acked_batch_id"] = batch_id;
if (!isnan(bat_v)) {
mqtt_doc["bat_v"] = bat_v;
}
mqtt_doc["rssi"] = pkt.rssi_dbm;
mqtt_doc["snr"] = pkt.snr_db;
mqtt_doc["time_valid"] = time_valid;
mqtt_doc["ack_epoch"] = ack_epoch;
String mqtt_payload;
serializeJson(mqtt_doc, mqtt_payload);
mqtt_publish_test(id, mqtt_payload);
}
#endif

View File

@@ -1,5 +1,4 @@
#include "time_manager.h"
#include "config.h"
#include <time.h>
static bool g_time_synced = false;
@@ -13,20 +12,15 @@ static void note_last_sync(uint32_t epoch) {
g_last_sync_utc = epoch;
}
static void ensure_timezone_set() {
if (g_tz_set) {
return;
}
setenv("TZ", TIMEZONE_TZ, 1);
tzset();
g_tz_set = true;
}
void time_receiver_init(const char *ntp_server_1, const char *ntp_server_2) {
const char *server1 = (ntp_server_1 && ntp_server_1[0] != '\0') ? ntp_server_1 : "pool.ntp.org";
const char *server2 = (ntp_server_2 && ntp_server_2[0] != '\0') ? ntp_server_2 : "time.nist.gov";
configTime(0, 0, server1, server2);
ensure_timezone_set();
if (!g_tz_set) {
setenv("TZ", "CET-1CEST,M3.5.0/2,M10.5.0/3", 1);
tzset();
g_tz_set = true;
}
}
uint32_t time_get_utc() {
@@ -46,7 +40,11 @@ bool time_is_synced() {
}
void time_set_utc(uint32_t epoch) {
ensure_timezone_set();
if (!g_tz_set) {
setenv("TZ", "CET-1CEST,M3.5.0/2,M10.5.0/3", 1);
tzset();
g_tz_set = true;
}
struct timeval tv;
tv.tv_sec = epoch;
tv.tv_usec = 0;

View File

@@ -57,32 +57,6 @@ static HistoryJob g_history = {};
static constexpr size_t SD_LIST_MAX_FILES = 200;
static constexpr size_t SD_DOWNLOAD_MAX_PATH = 160;
static String format_utc_timestamp(uint32_t ts_utc) {
if (ts_utc == 0) {
return "n/a";
}
time_t t = static_cast<time_t>(ts_utc);
struct tm tm_utc;
gmtime_r(&t, &tm_utc);
char buf[32];
snprintf(buf, sizeof(buf), "%04d-%02d-%02d %02d:%02d:%02d UTC",
tm_utc.tm_year + 1900,
tm_utc.tm_mon + 1,
tm_utc.tm_mday,
tm_utc.tm_hour,
tm_utc.tm_min,
tm_utc.tm_sec);
return String(buf);
}
static uint32_t timestamp_age_seconds(uint32_t ts_utc) {
uint32_t now_utc = time_get_utc();
if (ts_utc == 0 || now_utc < ts_utc) {
return 0;
}
return now_utc - ts_utc;
}
static int32_t round_power_w(float value) {
if (isnan(value)) {
return 0;
@@ -389,6 +363,7 @@ static String render_sender_block(const SenderStatus &status) {
s += " RSSI:" + String(status.last_data.link_rssi_dbm) + " SNR:" + String(status.last_data.link_snr_db, 1);
}
if (status.has_data) {
s += " ack:" + String(status.last_acked_batch_id);
s += " err_tx:" + String(status.last_data.err_lora_tx);
s += " err_last:" + String(static_cast<uint8_t>(status.last_data.last_error));
s += " (" + String(fault_text(status.last_data.last_error)) + ")";
@@ -400,16 +375,19 @@ static String render_sender_block(const SenderStatus &status) {
if (!status.has_data) {
s += "No data";
} else {
s += "Last update: " + format_utc_timestamp(status.last_update_ts_utc);
if (time_is_synced()) {
s += " (" + String(timestamp_age_seconds(status.last_update_ts_utc)) + "s ago)";
if (status.last_data.energy_multi) {
s += "Energy1: " + String(status.last_data.energy_kwh_int[0]) + " kWh<br>";
s += "Energy2: " + String(status.last_data.energy_kwh_int[1]) + " kWh<br>";
if (status.last_data.energy_meter_count >= 3) {
s += "Energy3: " + String(status.last_data.energy_kwh_int[2]) + " kWh<br>";
}
s += "<br>";
} else {
s += "Energy: " + String(status.last_data.energy_total_kwh, 2) + " kWh<br>";
s += "Power: " + String(round_power_w(status.last_data.total_power_w)) + " W<br>";
s += "P1/P2/P3: " + String(round_power_w(status.last_data.phase_power_w[0])) + " / " +
String(round_power_w(status.last_data.phase_power_w[1])) + " / " +
String(round_power_w(status.last_data.phase_power_w[2])) + " W<br>";
}
s += "Battery: " + String(status.last_data.battery_percent) + "% (" + String(status.last_data.battery_voltage_v, 2) + " V)";
}
s += "</div>";
@@ -636,14 +614,16 @@ static void handle_sender() {
if (g_last_batch_count[i] > 0) {
html += "<h3>Last batch (" + String(g_last_batch_count[i]) + " samples)</h3>";
html += "<table border='1' cellspacing='0' cellpadding='3'>";
html += "<tr><th>#</th><th>ts</th><th>e_kwh</th><th>p_w</th><th>p1_w</th><th>p2_w</th><th>p3_w</th>";
html += "<tr><th>#</th><th>ts</th><th>energy1_kwh</th><th>energy2_kwh</th><th>energy3_kwh</th><th>p_w</th><th>p1_w</th><th>p2_w</th><th>p3_w</th>";
html += "<th>bat_v</th><th>bat_pct</th><th>rssi</th><th>snr</th><th>err_tx</th><th>err_last</th><th>rx_reject</th></tr>";
for (uint8_t r = 0; r < g_last_batch_count[i]; ++r) {
const MeterData &d = g_last_batch[i][r];
html += "<tr>";
html += "<td>" + String(r) + "</td>";
html += "<td>" + String(d.ts_utc) + "</td>";
html += "<td>" + String(d.energy_total_kwh, 2) + "</td>";
html += "<td>" + String(d.energy_kwh_int[0]) + "</td>";
html += "<td>" + String(d.energy_kwh_int[1]) + "</td>";
html += "<td>" + String(d.energy_kwh_int[2]) + "</td>";
html += "<td>" + String(round_power_w(d.total_power_w)) + "</td>";
html += "<td>" + String(round_power_w(d.phase_power_w[0])) + "</td>";
html += "<td>" + String(round_power_w(d.phase_power_w[1])) + "</td>";