Add IEC62056 parsing, OLED timing, and batch LoRa send

This commit is contained in:
2026-01-28 01:22:13 +01:00
parent 449fff1f06
commit e480677b49
8 changed files with 570 additions and 65 deletions

View File

@@ -36,7 +36,7 @@ Variants:
## Firmware Roles
### Sender (battery-powered)
- Reads DD3 smart meter via optical IR (UART 9600 7E1).
- Reads smart meter via optical IR (UART 9600 7E1).
- Extracts OBIS values:
- Energy total: 1-0:1.8.0*255
- Total power: 1-0:16.7.0*255
@@ -65,6 +65,7 @@ void sender_cycle() {
display_tick();
lora_receive_time_sync(); // optional
keep_oled_on_for_read_window();
deep_sleep(SENDER_WAKE_INTERVAL_SEC);
}
```
@@ -195,11 +196,11 @@ inline constexpr uint16_t EXPECTED_SENDER_IDS[NUM_SENDERS] = { 0xF19C };
```
## OLED Behavior
- After reset, OLED stays **ON for 10 minutes** regardless of switch.
- After that:
- Sender: OLED stays **ON for 10 seconds** on each wake, then powers down for sleep.
- Receiver: OLED follows the 10-minute auto-off behavior:
- GPIO14 HIGH: OLED forced ON.
- GPIO14 LOW: start 10-minute auto-off timer.
- Pages rotate every 10s.
- GPIO14 LOW: auto-off after 10 minutes.
- Pages rotate every 4s.
## Power & Battery
- Sender disables WiFi/BLE, reads VBAT via ADC, uses linear SoC map:
@@ -233,7 +234,7 @@ inline constexpr uint16_t EXPECTED_SENDER_IDS[NUM_SENDERS] = { 0xF19C };
## Limits & Known Constraints
- **Compression**: uses lightweight RLE (good for JSON but not optimal).
- **OBIS parsing**: heuristic SML parser; may need tuning for some DD3 meters.
- **OBIS parsing**: supports IEC 62056-21 ASCII (Mode D) and SML; may need tuning for some meters.
- **Payload size**: JSON < 256 bytes (enforced by ArduinoJson static doc).
- **Battery ADC**: uses simple linear calibration constant in `power_manager.cpp`.
- **OLED**: no hardware reset line is used (matches working reference).
@@ -244,7 +245,7 @@ inline constexpr uint16_t EXPECTED_SENDER_IDS[NUM_SENDERS] = { 0xF19C };
- `include/json_codec.h`, `src/json_codec.cpp`: JSON encode/decode
- `include/compressor.h`, `src/compressor.cpp`: RLE compression
- `include/lora_transport.h`, `src/lora_transport.cpp`: LoRa packet + CRC
- `include/meter_driver.h`, `src/meter_driver.cpp`: SML/OBIS parse
- `include/meter_driver.h`, `src/meter_driver.cpp`: IEC 62056-21 ASCII + SML parse
- `include/power_manager.h`, `src/power_manager.cpp`: ADC + sleep
- `include/time_manager.h`, `src/time_manager.cpp`: NTP + time sync
- `include/wifi_manager.h`, `src/wifi_manager.cpp`: NVS config + WiFi

View File

@@ -10,7 +10,8 @@ enum class DeviceRole : uint8_t {
enum class PayloadType : uint8_t {
MeterData = 0,
TestCode = 1,
TimeSync = 2
TimeSync = 2,
MeterBatch = 3
};
constexpr uint8_t PROTOCOL_VERSION = 1;
@@ -53,6 +54,9 @@ constexpr uint32_t TIME_SYNC_INTERVAL_SEC = 60;
constexpr uint32_t OLED_PAGE_INTERVAL_MS = 4000;
constexpr uint32_t OLED_AUTO_OFF_MS = 10UL * 60UL * 1000UL;
constexpr uint32_t SENDER_OLED_READ_MS = 10000;
constexpr uint32_t METER_SAMPLE_INTERVAL_MS = 1000;
constexpr uint32_t METER_SEND_INTERVAL_MS = 30000;
constexpr uint8_t METER_BATCH_MAX_SAMPLES = 30;
constexpr uint8_t NUM_SENDERS = 1;
inline constexpr uint16_t EXPECTED_SENDER_IDS[NUM_SENDERS] = {

View File

@@ -5,3 +5,5 @@
bool meterDataToJson(const MeterData &data, String &out_json);
bool jsonToMeterData(const String &json, MeterData &data);
bool meterBatchToJson(const MeterData *samples, size_t count, String &out_json);
bool jsonToMeterBatch(const String &json, MeterData *out_samples, size_t max_count, size_t &out_count);

View File

@@ -7,4 +7,5 @@ void power_sender_init();
void power_receiver_init();
void read_battery(MeterData &data);
uint8_t battery_percent_from_voltage(float voltage_v);
void light_sleep_ms(uint32_t ms);
void go_to_deep_sleep(uint32_t seconds);

View File

@@ -59,3 +59,90 @@ bool jsonToMeterData(const String &json, MeterData &data) {
return true;
}
bool meterBatchToJson(const MeterData *samples, size_t count, String &out_json) {
if (!samples || count == 0) {
return false;
}
DynamicJsonDocument doc(8192);
doc["id"] = samples[count - 1].device_id;
doc["bat_v"] = samples[count - 1].battery_voltage_v;
doc["bat_pct"] = samples[count - 1].battery_percent;
JsonArray arr = doc.createNestedArray("s");
for (size_t i = 0; i < count; ++i) {
JsonArray row = arr.createNestedArray();
row.add(samples[i].ts_utc);
row.add(samples[i].energy_total_kwh);
row.add(samples[i].total_power_w);
row.add(samples[i].phase_power_w[0]);
row.add(samples[i].phase_power_w[1]);
row.add(samples[i].phase_power_w[2]);
row.add(samples[i].phase_voltage_v[0]);
row.add(samples[i].phase_voltage_v[1]);
row.add(samples[i].phase_voltage_v[2]);
row.add(samples[i].valid ? 1 : 0);
}
out_json = "";
size_t len = serializeJson(doc, out_json);
return len > 0;
}
bool jsonToMeterBatch(const String &json, MeterData *out_samples, size_t max_count, size_t &out_count) {
out_count = 0;
if (!out_samples || max_count == 0) {
return false;
}
DynamicJsonDocument doc(8192);
DeserializationError err = deserializeJson(doc, json);
if (err) {
return false;
}
JsonArray arr = doc["s"].as<JsonArray>();
if (arr.isNull()) {
return false;
}
const char *id = doc["id"] | "";
float bat_v = doc["bat_v"] | NAN;
uint8_t bat_pct = doc["bat_pct"] | 0;
size_t idx = 0;
for (JsonArray row : arr) {
if (idx >= max_count) {
break;
}
MeterData &data = out_samples[idx];
data = {};
strncpy(data.device_id, id, sizeof(data.device_id));
data.device_id[sizeof(data.device_id) - 1] = '\0';
data.ts_utc = row[0] | 0;
data.energy_total_kwh = row[1] | NAN;
data.total_power_w = row[2] | NAN;
data.phase_power_w[0] = row[3] | NAN;
data.phase_power_w[1] = row[4] | NAN;
data.phase_power_w[2] = row[5] | NAN;
data.phase_voltage_v[0] = row[6] | NAN;
data.phase_voltage_v[1] = row[7] | NAN;
data.phase_voltage_v[2] = row[8] | NAN;
data.valid = (row[9] | 1) != 0;
data.battery_voltage_v = bat_v;
if (doc["bat_pct"].isNull() && !isnan(bat_v)) {
data.battery_percent = battery_percent_from_voltage(bat_v);
} else {
data.battery_percent = bat_pct;
}
if (strlen(data.device_id) >= 8) {
const char *suffix = data.device_id + strlen(data.device_id) - 4;
data.short_id = static_cast<uint16_t>(strtoul(suffix, nullptr, 16));
}
idx++;
}
out_count = idx;
return idx > 0;
}

View File

@@ -23,6 +23,32 @@ static WifiMqttConfig g_cfg;
static uint32_t g_last_timesync_ms = 0;
static constexpr uint32_t TIME_SYNC_OFFSET_MS = 15000;
static constexpr size_t BATCH_HEADER_SIZE = 6;
static constexpr size_t BATCH_CHUNK_PAYLOAD = LORA_MAX_PAYLOAD - BATCH_HEADER_SIZE;
static constexpr size_t BATCH_MAX_COMPRESSED = 4096;
static constexpr size_t BATCH_MAX_DECOMPRESSED = 8192;
static constexpr uint32_t BATCH_RX_TIMEOUT_MS = 2000;
static MeterData g_meter_samples[METER_BATCH_MAX_SAMPLES];
static uint8_t g_meter_sample_count = 0;
static uint8_t g_meter_sample_head = 0;
static uint32_t g_last_sample_ms = 0;
static uint32_t g_last_send_ms = 0;
static uint16_t g_batch_id = 1;
struct BatchRxState {
bool active;
uint16_t batch_id;
uint8_t next_index;
uint8_t expected_chunks;
uint16_t total_len;
uint16_t received_len;
uint32_t last_rx_ms;
uint8_t buffer[BATCH_MAX_COMPRESSED];
};
static BatchRxState g_batch_rx = {};
static void init_sender_statuses() {
for (uint8_t i = 0; i < NUM_SENDERS; ++i) {
g_sender_statuses[i] = {};
@@ -33,6 +59,187 @@ static void init_sender_statuses() {
}
}
static void push_meter_sample(const MeterData &data) {
g_meter_samples[g_meter_sample_head] = data;
g_meter_sample_head = (g_meter_sample_head + 1) % METER_BATCH_MAX_SAMPLES;
if (g_meter_sample_count < METER_BATCH_MAX_SAMPLES) {
g_meter_sample_count++;
}
}
static size_t copy_meter_samples(MeterData *out, size_t max_count) {
if (!out || max_count == 0 || g_meter_sample_count == 0) {
return 0;
}
size_t count = g_meter_sample_count < max_count ? g_meter_sample_count : max_count;
size_t start = (g_meter_sample_head + METER_BATCH_MAX_SAMPLES - count) % METER_BATCH_MAX_SAMPLES;
for (size_t i = 0; i < count; ++i) {
out[i] = g_meter_samples[(start + i) % METER_BATCH_MAX_SAMPLES];
}
return count;
}
static uint32_t last_sample_ts() {
if (g_meter_sample_count == 0) {
uint32_t now_utc = time_get_utc();
return now_utc > 0 ? now_utc : millis() / 1000;
}
size_t idx = (g_meter_sample_head + METER_BATCH_MAX_SAMPLES - 1) % METER_BATCH_MAX_SAMPLES;
return g_meter_samples[idx].ts_utc;
}
static void write_u16_le(uint8_t *dst, uint16_t value) {
dst[0] = static_cast<uint8_t>(value & 0xFF);
dst[1] = static_cast<uint8_t>((value >> 8) & 0xFF);
}
static uint16_t read_u16_le(const uint8_t *src) {
return static_cast<uint16_t>(src[0]) | (static_cast<uint16_t>(src[1]) << 8);
}
static bool send_batch_payload(const uint8_t *data, size_t len, uint32_t ts_for_display) {
if (!data || len == 0 || len > BATCH_MAX_COMPRESSED) {
return false;
}
uint8_t chunk_count = static_cast<uint8_t>((len + BATCH_CHUNK_PAYLOAD - 1) / BATCH_CHUNK_PAYLOAD);
if (chunk_count == 0) {
return false;
}
bool all_ok = true;
size_t offset = 0;
for (uint8_t i = 0; i < chunk_count; ++i) {
size_t chunk_len = len - offset;
if (chunk_len > BATCH_CHUNK_PAYLOAD) {
chunk_len = BATCH_CHUNK_PAYLOAD;
}
LoraPacket pkt = {};
pkt.protocol_version = PROTOCOL_VERSION;
pkt.role = DeviceRole::Sender;
pkt.device_id_short = g_short_id;
pkt.payload_type = PayloadType::MeterBatch;
pkt.payload_len = chunk_len + BATCH_HEADER_SIZE;
uint8_t *payload = pkt.payload;
write_u16_le(&payload[0], g_batch_id);
payload[2] = i;
payload[3] = chunk_count;
write_u16_le(&payload[4], static_cast<uint16_t>(len));
memcpy(&payload[BATCH_HEADER_SIZE], data + offset, chunk_len);
bool ok = lora_send(pkt);
all_ok = all_ok && ok;
offset += chunk_len;
delay(10);
}
if (all_ok) {
g_batch_id++;
}
display_set_last_tx(all_ok, ts_for_display);
return all_ok;
}
static bool send_meter_batch(uint32_t ts_for_display) {
MeterData ordered[METER_BATCH_MAX_SAMPLES];
size_t count = copy_meter_samples(ordered, METER_BATCH_MAX_SAMPLES);
if (count == 0) {
return false;
}
String json;
if (!meterBatchToJson(ordered, count, json)) {
return false;
}
static uint8_t compressed[BATCH_MAX_COMPRESSED];
size_t compressed_len = 0;
if (!compressBuffer(reinterpret_cast<const uint8_t *>(json.c_str()), json.length(), compressed, sizeof(compressed), compressed_len)) {
return false;
}
bool ok = send_batch_payload(compressed, compressed_len, ts_for_display);
if (ok) {
g_meter_sample_count = 0;
g_meter_sample_head = 0;
}
return ok;
}
static void reset_batch_rx() {
g_batch_rx.active = false;
g_batch_rx.batch_id = 0;
g_batch_rx.next_index = 0;
g_batch_rx.expected_chunks = 0;
g_batch_rx.total_len = 0;
g_batch_rx.received_len = 0;
g_batch_rx.last_rx_ms = 0;
}
static bool process_batch_packet(const LoraPacket &pkt, String &out_json) {
if (pkt.payload_len < BATCH_HEADER_SIZE) {
return false;
}
uint16_t batch_id = read_u16_le(&pkt.payload[0]);
uint8_t chunk_index = pkt.payload[2];
uint8_t chunk_count = pkt.payload[3];
uint16_t total_len = read_u16_le(&pkt.payload[4]);
const uint8_t *chunk_data = &pkt.payload[BATCH_HEADER_SIZE];
size_t chunk_len = pkt.payload_len - BATCH_HEADER_SIZE;
uint32_t now_ms = millis();
if (!g_batch_rx.active || batch_id != g_batch_rx.batch_id || (now_ms - g_batch_rx.last_rx_ms > BATCH_RX_TIMEOUT_MS)) {
if (chunk_index != 0) {
reset_batch_rx();
return false;
}
if (total_len == 0 || total_len > BATCH_MAX_COMPRESSED || chunk_count == 0) {
reset_batch_rx();
return false;
}
g_batch_rx.active = true;
g_batch_rx.batch_id = batch_id;
g_batch_rx.expected_chunks = chunk_count;
g_batch_rx.total_len = total_len;
g_batch_rx.received_len = 0;
g_batch_rx.next_index = 0;
}
if (!g_batch_rx.active || chunk_index != g_batch_rx.next_index || chunk_count != g_batch_rx.expected_chunks) {
reset_batch_rx();
return false;
}
if (g_batch_rx.received_len + chunk_len > g_batch_rx.total_len || g_batch_rx.received_len + chunk_len > BATCH_MAX_COMPRESSED) {
reset_batch_rx();
return false;
}
memcpy(&g_batch_rx.buffer[g_batch_rx.received_len], chunk_data, chunk_len);
g_batch_rx.received_len += static_cast<uint16_t>(chunk_len);
g_batch_rx.next_index++;
g_batch_rx.last_rx_ms = now_ms;
if (g_batch_rx.next_index == g_batch_rx.expected_chunks && g_batch_rx.received_len == g_batch_rx.total_len) {
static uint8_t decompressed[BATCH_MAX_DECOMPRESSED];
size_t decompressed_len = 0;
if (!decompressBuffer(g_batch_rx.buffer, g_batch_rx.received_len, decompressed, sizeof(decompressed) - 1, decompressed_len)) {
reset_batch_rx();
return false;
}
if (decompressed_len >= sizeof(decompressed)) {
reset_batch_rx();
return false;
}
decompressed[decompressed_len] = '\0';
out_json = String(reinterpret_cast<const char *>(decompressed));
reset_batch_rx();
return true;
}
return false;
}
void setup() {
Serial.begin(115200);
delay(200);
@@ -48,6 +255,8 @@ void setup() {
if (g_role == DeviceRole::Sender) {
power_sender_init();
meter_init();
g_last_sample_ms = millis() - METER_SAMPLE_INTERVAL_MS;
g_last_send_ms = millis();
} else {
power_receiver_init();
wifi_manager_init();
@@ -78,7 +287,11 @@ void setup() {
}
}
static void sender_cycle() {
static void sender_loop() {
uint32_t now_ms = millis();
if (now_ms - g_last_sample_ms >= METER_SAMPLE_INTERVAL_MS) {
g_last_sample_ms = now_ms;
MeterData data = {};
data.short_id = g_short_id;
strncpy(data.device_id, g_device_id, sizeof(data.device_id));
@@ -90,44 +303,29 @@ static void sender_cycle() {
data.ts_utc = now_utc > 0 ? now_utc : millis() / 1000;
data.valid = meter_ok;
push_meter_sample(data);
display_set_last_meter(data);
display_set_last_read(meter_ok, data.ts_utc);
String json;
bool json_ok = meterDataToJson(data, json);
bool tx_ok = false;
if (json_ok) {
uint8_t compressed[LORA_MAX_PAYLOAD];
size_t compressed_len = 0;
if (compressBuffer(reinterpret_cast<const uint8_t *>(json.c_str()), json.length(), compressed, sizeof(compressed), compressed_len)) {
LoraPacket pkt = {};
pkt.protocol_version = PROTOCOL_VERSION;
pkt.role = DeviceRole::Sender;
pkt.device_id_short = g_short_id;
pkt.payload_type = PayloadType::MeterData;
pkt.payload_len = compressed_len;
memcpy(pkt.payload, compressed, compressed_len);
tx_ok = lora_send(pkt);
}
}
display_set_last_tx(tx_ok, data.ts_utc);
display_tick();
if (now_ms - g_last_send_ms >= METER_SEND_INTERVAL_MS) {
g_last_send_ms = now_ms;
send_meter_batch(last_sample_ts());
}
LoraPacket rx = {};
if (lora_receive(rx, 200) && rx.protocol_version == PROTOCOL_VERSION && rx.payload_type == PayloadType::TimeSync) {
if (lora_receive(rx, 0) && rx.protocol_version == PROTOCOL_VERSION && rx.payload_type == PayloadType::TimeSync) {
time_handle_timesync_payload(rx.payload, rx.payload_len);
}
uint32_t start = millis();
while (millis() - start < SENDER_OLED_READ_MS) {
display_tick();
delay(50);
uint32_t next_sample_due = g_last_sample_ms + METER_SAMPLE_INTERVAL_MS;
uint32_t next_send_due = g_last_send_ms + METER_SEND_INTERVAL_MS;
uint32_t next_due = next_sample_due < next_send_due ? next_sample_due : next_send_due;
if (next_due > now_ms) {
light_sleep_ms(next_due - now_ms);
}
display_power_down();
lora_sleep();
go_to_deep_sleep(SENDER_WAKE_INTERVAL_SEC);
}
static void receiver_loop() {
@@ -135,7 +333,8 @@ static void receiver_loop() {
g_last_timesync_ms = millis() - (TIME_SYNC_INTERVAL_SEC * 1000UL - TIME_SYNC_OFFSET_MS);
}
LoraPacket pkt = {};
if (lora_receive(pkt, 0) && pkt.protocol_version == PROTOCOL_VERSION && pkt.payload_type == PayloadType::MeterData) {
if (lora_receive(pkt, 0) && pkt.protocol_version == PROTOCOL_VERSION) {
if (pkt.payload_type == PayloadType::MeterData) {
uint8_t decompressed[256];
size_t decompressed_len = 0;
if (decompressBuffer(pkt.payload, pkt.payload_len, decompressed, sizeof(decompressed) - 1, decompressed_len)) {
@@ -157,6 +356,29 @@ static void receiver_loop() {
}
}
}
} else if (pkt.payload_type == PayloadType::MeterBatch) {
String json;
if (process_batch_packet(pkt, json)) {
MeterData samples[METER_BATCH_MAX_SAMPLES];
size_t count = 0;
if (jsonToMeterBatch(json, samples, METER_BATCH_MAX_SAMPLES, count)) {
for (uint8_t i = 0; i < NUM_SENDERS; ++i) {
if (pkt.device_id_short == EXPECTED_SENDER_IDS[i]) {
for (size_t s = 0; s < count; ++s) {
samples[s].short_id = pkt.device_id_short;
mqtt_publish_state(samples[s]);
}
if (count > 0) {
g_sender_statuses[i].last_data = samples[count - 1];
g_sender_statuses[i].last_update_ts_utc = samples[count - 1].ts_utc;
g_sender_statuses[i].has_data = true;
}
break;
}
}
}
}
}
}
if (!g_ap_mode && millis() - g_last_timesync_ms > TIME_SYNC_INTERVAL_SEC * 1000UL) {
@@ -188,7 +410,7 @@ void loop() {
#endif
if (g_role == DeviceRole::Sender) {
sender_cycle();
sender_loop();
} else {
receiver_loop();
}

View File

@@ -1,6 +1,7 @@
#include "meter_driver.h"
#include "config.h"
#include <math.h>
#include <stdlib.h>
#include <string.h>
static constexpr uint32_t METER_READ_TIMEOUT_MS = 2000;
@@ -76,7 +77,7 @@ void meter_init() {
Serial2.begin(9600, SERIAL_7E1, PIN_METER_RX, -1);
}
bool meter_read(MeterData &data) {
static bool meter_read_sml(MeterData &data) {
uint8_t buffer[SML_BUFFER_SIZE];
size_t len = 0;
bool started = false;
@@ -164,3 +165,182 @@ parse_frame:
data.valid = ok;
return ok;
}
static bool parse_obis_ascii_value(const char *line, const char *obis, float &out_value) {
const char *p = strstr(line, obis);
if (!p) {
return false;
}
const char *lparen = strchr(p, '(');
if (!lparen) {
return false;
}
const char *cur = lparen + 1;
char num_buf[24];
size_t n = 0;
while (*cur && *cur != ')' && *cur != '*') {
char c = *cur++;
if ((c >= '0' && c <= '9') || c == '-' || c == '+' || c == '.' || c == ',') {
if (c == ',') {
c = '.';
}
if (n + 1 < sizeof(num_buf)) {
num_buf[n++] = c;
}
} else if (n == 0) {
continue;
} else {
break;
}
}
if (n == 0) {
return false;
}
num_buf[n] = '\0';
out_value = static_cast<float>(atof(num_buf));
return true;
}
static bool parse_obis_ascii_unit_scale(const char *line, const char *obis, float &value) {
const char *p = strstr(line, obis);
if (!p) {
return false;
}
const char *asterisk = strchr(p, '*');
if (!asterisk) {
return false;
}
const char *end = strchr(asterisk, ')');
if (!end) {
return false;
}
char unit_buf[8];
size_t ulen = 0;
for (const char *c = asterisk + 1; c < end && ulen + 1 < sizeof(unit_buf); ++c) {
if (*c == ' ') {
continue;
}
unit_buf[ulen++] = *c;
}
unit_buf[ulen] = '\0';
if (ulen == 0) {
return false;
}
if (strcmp(unit_buf, "Wh") == 0) {
value *= 0.001f;
return true;
}
return false;
}
static bool meter_read_ascii(MeterData &data) {
const uint32_t start_ms = millis();
bool in_telegram = false;
bool got_any = false;
bool energy_ok = false;
bool total_p_ok = false;
bool p1_ok = false;
bool p2_ok = false;
bool p3_ok = false;
bool v1_ok = false;
bool v2_ok = false;
bool v3_ok = false;
char line[128];
size_t line_len = 0;
while (millis() - start_ms < METER_READ_TIMEOUT_MS) {
while (Serial2.available()) {
char c = static_cast<char>(Serial2.read());
if (!in_telegram) {
if (c == '/') {
in_telegram = true;
line_len = 0;
line[line_len++] = c;
}
continue;
}
if (c == '\r') {
continue;
}
if (c == '\n') {
line[line_len] = '\0';
if (line[0] == '!') {
return got_any;
}
float value = NAN;
if (parse_obis_ascii_value(line, "1-0:1.8.0", value)) {
parse_obis_ascii_unit_scale(line, "1-0:1.8.0", value);
data.energy_total_kwh = value;
energy_ok = true;
got_any = true;
}
if (parse_obis_ascii_value(line, "1-0:16.7.0", value)) {
data.total_power_w = value;
total_p_ok = true;
got_any = true;
}
if (parse_obis_ascii_value(line, "1-0:36.7.0", value)) {
data.phase_power_w[0] = value;
p1_ok = true;
got_any = true;
}
if (parse_obis_ascii_value(line, "1-0:56.7.0", value)) {
data.phase_power_w[1] = value;
p2_ok = true;
got_any = true;
}
if (parse_obis_ascii_value(line, "1-0:76.7.0", value)) {
data.phase_power_w[2] = value;
p3_ok = true;
got_any = true;
}
if (parse_obis_ascii_value(line, "1-0:32.7.0", value)) {
data.phase_voltage_v[0] = value;
v1_ok = true;
got_any = true;
}
if (parse_obis_ascii_value(line, "1-0:52.7.0", value)) {
data.phase_voltage_v[1] = value;
v2_ok = true;
got_any = true;
}
if (parse_obis_ascii_value(line, "1-0:72.7.0", value)) {
data.phase_voltage_v[2] = value;
v3_ok = true;
got_any = true;
}
line_len = 0;
continue;
}
if (line_len + 1 < sizeof(line)) {
line[line_len++] = c;
}
}
delay(5);
}
data.valid = energy_ok || total_p_ok || p1_ok || p2_ok || p3_ok || v1_ok || v2_ok || v3_ok;
return data.valid;
}
bool meter_read(MeterData &data) {
data.energy_total_kwh = NAN;
data.total_power_w = NAN;
data.phase_power_w[0] = NAN;
data.phase_power_w[1] = NAN;
data.phase_power_w[2] = NAN;
data.phase_voltage_v[0] = NAN;
data.phase_voltage_v[1] = NAN;
data.phase_voltage_v[2] = NAN;
data.valid = false;
if (meter_read_ascii(data)) {
return true;
}
return meter_read_sml(data);
}

View File

@@ -47,6 +47,14 @@ uint8_t battery_percent_from_voltage(float voltage_v) {
return static_cast<uint8_t>(pct + 0.5f);
}
void light_sleep_ms(uint32_t ms) {
if (ms == 0) {
return;
}
esp_sleep_enable_timer_wakeup(static_cast<uint64_t>(ms) * 1000ULL);
esp_light_sleep_start();
}
void go_to_deep_sleep(uint32_t seconds) {
esp_sleep_enable_timer_wakeup(static_cast<uint64_t>(seconds) * 1000000ULL);
esp_deep_sleep_start();